Astronomy 3

A comprehensive course that teaches the big ideas behind Newton and Einstein’s ground-breaking work. Students will discover how to design and build reflector and refractor telescopes, investigate how gravity curves spacetime, identify meteorites, detect black holes, play with the electromagnetic spectrum, and uncover the mysterious forces that shape the incredible universe we call home.

Created by Aurora Lipper, Supercharged Science

www.SuperchargedScience.com

This curriculum is aligned with the National Standards and STEM for Science.
Table of Contents

Introduction.. 3
Educational Goals for Astronomy 3 .. 4
Master Materials List for All Labs.. 6
Lab Safety .. 7

Lesson #1: Kepler’s Swinging System.. 8
Lesson #2: Earth’s Magnetic Pulse... 14
Lesson #3: Retrograde Motion ... 17
Lesson #4: Rocket Math ... 20
Lesson #5: What’s in the Sky? ... 24
Lesson #6: Jupiter’s Jolts.. 29
Lesson #7: Moons of Jupiter .. 32
Lesson #8: Solar Viewers ... 37
Lesson #9: Cosmic Ray Detector ... 41
Lesson #10: Spectroscopes .. 44
Lesson #11: Fire & Optics .. 50
Lesson #12: Reflector and Refractor Telescopes .. 52
Lesson #13: Black Holes ... 55
Lesson #14: Black Hole Bucket .. 59

Astronomy 3 Evaluation.. 65
Astronomy 3 Quiz .. 66
Astronomy 3 Lab Practical ... 68

Answers to Exercises and Activities ... 70

Vocabulary for the Unit... 75
Introduction

Greetings and welcome to the study of Astronomy. This unit was created by a mechanical engineer, university instructor, airplane pilot, astronomer, robot-builder and real rocket scientist... me! I have the happy opportunity to teach you everything I know about astronomy over the next set of lessons. I promise to give you my best stuff so you can take it and run with it ... or fly!

Astrophysics combines the knowledge of light (electromagnetic radiation), chemical reactions, atoms, energy, and physical motion all into one. To get the most out of these labs, there are really only a couple of things to keep in mind. Since we are all here to have fun and learn something new, this shouldn't be too hard.

One of the best things you can do as the student is to cultivate your curiosity about things. *Why did that move? How did that spin? What’s really going on here?*

This unit on Astronomy is chock-full of demonstrations and experiments for two big reasons. First, they're fun. But more importantly, the reason we do experiments in science is to hone your observational skills. Science experiments really speak for themselves much better than I can ever put into words or show you on a video. And I’m going to hit you with a lot of these science demonstrations and experiments to help you develop your observing techniques.

Scientists not only learn to observe what’s going on in the experiment, but they also learn how to observe what their experiment is telling them, which is found by looking at your data. It’s not enough to invent some new kind of experiment if you don’t know how it will perform when the conditions change a bit, like on Mars. We’re going to learn how to predict what we think will happen, design experiments that will test this idea, and look over the results we got to figure out where to go from there. Science is a process, it’s a way of thinking, and we're going to get plenty of practice at it.

Good luck with this astronomy unit!
Educational Goals for Astronomy 3

Astronomy is a fantastic area of science for teachers and students alike because it combines many different fields of science and still leaves a lot of room for wonder and exploration. The things we’re going to study in this unit border on sci-fi weird, but I assure you it’s all the same stuff real scientists are studying.

Here are the scientific concepts:

- Objects in the sky move in regular and predictable patterns. The patterns of stars stay the same, although they appear to move across the sky nightly, and different stars can be seen in different seasons.
- The Earth is one of several planets that orbit the Sun, and the Moon orbits the Earth.
- The solar system consists of planets and other bodies that orbit the Sun in predictable paths.
- The appearance, general composition, relative position and size, and motion of objects in the solar system, including planets, planetary satellites, comets, and asteroids.
- The path of a planet around the Sun is due to the gravitational attraction between the Sun and the planet.
- Telescopes magnify the appearance of the Moon and the planets.
- The Sun, an average star, is the central and largest body in the solar system and is composed primarily of hydrogen and helium. The Sun uses nuclear reactions to generate its energy.
- Telescopes magnify the appearance of the Sun using special lenses and make it possible to locate sunspots and solar flares.
- White light is a mixture of many wavelengths (colors), including infrared, ultra-violet, visible, and more. Different instruments detect and measure different wavelengths of light.
- The number of stars that can be seen through telescopes is dramatically greater than can be seen by the unaided eye.
- The structure and composition of the universe can be learned from the study of stars and galaxies.
- Galaxies are clusters of billions of stars, and may have different shapes. The Sun is one of many stars in our own Milky Way galaxy. Stars may differ in size, temperature, and color.
- Black holes are objects where the escape velocity is greater than the speed of light. They are the leftovers of a BIG star explosion. There is nothing to keep it from collapsing, so it continues to collapse forever. It becomes so small and dense that the gravitational pull is so great that light itself can’t escape.
- Gravitational lensing occurs when black holes and other massive objects bend light.
- Mass causes spacetime to curve. The amount of curvature depends on how massive the object is and your distance from the massive object.

By the end of the labs in this unit, students will be able to:

- Design and build a telescope using optical equipment such as mirrors and lenses.
- Know how to demonstrate how the position of objects in the sky changes over time.
- Know the celestial objects in the solar system and how they relate and interact with each other.
- Understand how to determine the structure and composition of celestial objects.
- Differentiate observation from inference (interpretation) and know scientists’ explanations come partly from what they observe and partly from how they interpret their observations.
• Measure and estimate the length and volume of objects.
• Formulate and justify predictions based on cause-and-effect relationships.
• Conduct multiple trials to test a prediction and draw conclusions about the relationships between predictions and results.
• Construct and interpret graphs from measurements.
• Follow a set of written instructions for a scientific investigation.
Master Materials List for All Labs

This is a brief list of the materials that you will need to do all of the activities, experiments and projects in this unit. The set of materials listed below is just for one lab group. If you have a class of 10 lab groups, you'll need to get 10 sets of the materials listed below. Most materials are reusable.

<table>
<thead>
<tr>
<th>Item</th>
<th>Item</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum foil</td>
<td>Fishing line</td>
<td>Pencil</td>
</tr>
<tr>
<td>Aluminum pie pan</td>
<td>Flashlight</td>
<td>Pennies (10)</td>
</tr>
<tr>
<td>Baader film</td>
<td>Foam cup</td>
<td>Plastic baggie</td>
</tr>
<tr>
<td>(www.dracoproductions.net)</td>
<td>Foam plate</td>
<td>Popsicle sticks</td>
</tr>
<tr>
<td>Balloons (2)</td>
<td>Garbage bag (black)</td>
<td>Rubber band</td>
</tr>
<tr>
<td>Binoculars (optional)</td>
<td>Glass jar</td>
<td>Rubbing alcohol</td>
</tr>
<tr>
<td>Bouncy ball</td>
<td>Goggles</td>
<td>Ruler</td>
</tr>
<tr>
<td>Bowl</td>
<td>Hair from your head</td>
<td>Saran wrap</td>
</tr>
<tr>
<td>Buckets (2)</td>
<td>Heavy gloves for handling the dry ice (adults only)</td>
<td>Scissors</td>
</tr>
<tr>
<td>Bungee cords (2)</td>
<td></td>
<td>Small mirrors (2)</td>
</tr>
<tr>
<td>CD or DVD</td>
<td>Hot glue gun</td>
<td>Softball</td>
</tr>
<tr>
<td>Clothespins (4)</td>
<td>Index cards (5)</td>
<td>Stopwatch</td>
</tr>
<tr>
<td>Concave mirror</td>
<td>Laser pointer (cheap is best)</td>
<td>String (5’)</td>
</tr>
<tr>
<td>(www.hometrainingtools.com)</td>
<td>Magnets (2 rare earth type)</td>
<td>Tack</td>
</tr>
<tr>
<td>Diffraction grating</td>
<td>Magnets (4 doughnut)</td>
<td>Tennis ball</td>
</tr>
<tr>
<td>Double-convex lenses (2)</td>
<td>Magnifying glass</td>
<td>Thread (12”)</td>
</tr>
<tr>
<td>(www.hometrainingtools.com)</td>
<td>Marbles (3 sizes)</td>
<td>Wax paper</td>
</tr>
<tr>
<td>Drinking straws</td>
<td>Masking tape</td>
<td>Weight (0.5 lb)</td>
</tr>
<tr>
<td>Dry ice</td>
<td>Measuring tape (25-100’)</td>
<td>Weight (2.5 lb)</td>
</tr>
<tr>
<td>Fabric (3 squares of stretchy material)</td>
<td>Metal ball (like a ball bearing) or a magnetic marble</td>
<td>Wool cloth or sweater (2)</td>
</tr>
<tr>
<td>Feather</td>
<td>Nail (needs to be a little longer than the film canister)</td>
<td>Yard or meter sticks (2)</td>
</tr>
<tr>
<td>Felt (black)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Film canister or M&M container</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire extinguisher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing bobber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing bobber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lab Safety

Goggles: These should be worn when working with chemicals, heat, fire, or projectiles. These protect your eyes from chemical splatter, explosions, and tiny fast-moving objects aimed at the eyes. If you wear glasses, you can find goggles that fit over them. Don’t substitute eyeglasses for goggles, because of the lack of side protection. Eyeglasses don’t provide this important protection.

Clean up Messes: Your lab area should be neat, organized, and spotless before you start, during your experiment, and when you leave. Scientists waste more time hunting for lost papers, pieces of an experiment, and trying to reposition sensitive equipment... all of which could have easily been avoided had they been taught organizational skills from the start.

Dispose of Poisons: If a poisonous substance was used, created, or produced during your experiment, you must follow the proper handling procedures for disposal. You’ll find details for this in the experiments as needed.

Special Notes on Batteries: Do not use alkaline batteries with your experiments. Find the super-cheap kind of batteries (usually labeled “Heavy Duty” or “Super Heavy Duty”) because these types of batteries have a carbon-zinc core, which does not contain the acid that alkaline batteries have. This means when you wire up circuits incorrectly (which you should expect to do because you are learning), the circuits will not overheat or leak. If you use alkaline batteries (like Energizer and Duracell) and your students short a circuit, their wires and components will get super-hot and leak acid, which is very dangerous.

No Eating or Drinking in the Lab: All foods and drinks are banned from your classroom during science experimentation. When you eat or drink, you run the very real risk of ingesting part of your experiment. For electricity and magnetism labs, always wash your hands after the lab is over to rinse off the lead from the electrical components.

No Horse Play: When you goof around, accidents happen, which means chemicals spill, circuits short, and all kinds of hazards can occur that you weren’t expecting. Never throw anything to another person and be careful where you put your hands – it could be in the middle of a sensitive experiment, especially with magnetism and electricity. You don’t want to run the risk of getting shocked or electrified when it’s not part of your experiment.

Fire: If you think there’s a fire in the room (even if you’re not sure), let your teacher know right away. If they are not around (they always should be), smother the fire with a fire blanket or use a fire extinguisher and send someone to find an adult. Stop, drop, and roll!

Questions: If you’re not sure about something stop and ask, no matter what it’s about. If you don’t know how to properly handle a chemical, do part of an experiment, ask! If you’re not comfortable doing part of the experiment, then don’t do it.
Lesson #1: Kepler’s Swinging System

Overview Kepler’s Laws of Planetary Motion explain why the planets move at the speeds they do. You’ll be making a scale model of the solar system and tracking orbital speeds.

What to Learn Kepler’s 1st Law states that planetary orbits about the Sun are not circles, but rather ellipses. The Sun lies at one of the foci of the ellipse. Kepler’s 2nd Law states that a line connecting the Sun and an orbiting planet will sweep out equal areas in for a given amount of time. Translation: the further away a planet is from the Sun, the slower it goes.

Materials
- 100’ measuring tape
- Stopwatch

Experiment
1. What are the planets in our solar system starting closest to the Sun? On a sheet of paper, write down a planet and label it with the name. Do this for each of the eight planets.
 a. Mercury is 0.39 AU (in a rocket it would take 2.7 months to go straight to Mercury from the Sun)
 b. Venus is 0.72 AU
 c. Earth is 1 AU (in a rocket it would take 7 months to go straight to Earth from the Sun)
 d. Mars is 1.5 AU
 e. Jupiter is 5.2 AU
 f. Saturn is 9.6 AU
 g. Uranus is 19.2 AU
 h. Neptune is 30.1 AU (in a rocket it would take 18 years to go straight to Neptune from the Sun) Of course, we don’t travel to planets in straight lines – we use curved paths to make use of the gravitational pull of nearby objects to slingshot us forward and save on fuel.
 i. Now draw the location of the asteroid belt.
 j. Draw the position of the Kuiper Belt and then draw and label it (beyond Neptune).
 k. Where are the five dwarf planets? They are in the Kuiper belt and the asteroid belt:
 i. Ceres (in the Asteroid belt, closer to Jupiter than Mars)
 ii. Pluto (is 39.44 AU from the Sun)
 iii. Haumea (43.3 AU)
 iv. Makemake (45.8 AU)
 v. Eris. (67.7 AU)
2. Now for the fun part! You’ll need a group of friends to work together for this lab, so you have at least one student for each planet, one for the Sun, and two for the asteroid belts, and five for the dwarf planets. You can assign additional students to be moons of Earth (Moon), Mars (Phobos and Deimos), Jupiter (assign only 4 for the largest ones: Ganymede, Callisto, Io, and Europa), Saturn (again, assign only 4: Titan, Rhea, Iapetus, and Dione), Uranus (Oberon, Titania), and Neptune (Triton). If you still have extra students, assign one to Charon (Pluto’s binary companion) and one each to Hydra and Nix, which orbit Pluto and Charon. While you ask the students to walk around in a later step, the moons can circle while they orbit.

3. First, walk outside to a very large area.

4. Hand the Sun student the measuring tape.

5. Ask Kuiper Belt student(s) to take the end of the measuring tape and begin walking slowly away from the Sun.

6. Using the data table, with each student assigned to the distance shown, grab the measuring tape and walk along with it. Please be careful – measuring tapes can have sharp edges! You can use gloves when you grab the tape if you’ve got a sharp steel measuring tape to protect your hands. Ask the Sun to call out the distances periodically so the students know when it’s time to come up.

7. What do you notice about the distances between the planets? The nearest star is 114.5 miles away!

<table>
<thead>
<tr>
<th>Planet/Object</th>
<th>Distance from the Sun</th>
<th>Distance from the Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>10.4 inches</td>
<td>0.264 m</td>
</tr>
<tr>
<td>Venus</td>
<td>1 foot 7.4 inches</td>
<td>0.493 m</td>
</tr>
<tr>
<td>Earth</td>
<td>2 feet 2.9 inches</td>
<td>0.682 m</td>
</tr>
<tr>
<td>Mars</td>
<td>3 feet 4.9 inches</td>
<td>1.039 m</td>
</tr>
<tr>
<td>Jupiter</td>
<td>11 feet 7.76 inches</td>
<td>3.649 m</td>
</tr>
<tr>
<td>Saturn</td>
<td>21 feet 4.3 inches</td>
<td>6.51 m</td>
</tr>
<tr>
<td>Uranus</td>
<td>42 feet 11.5 inches</td>
<td>13.094 m</td>
</tr>
<tr>
<td>Neptune</td>
<td>67 feet 4.2 inches</td>
<td>20.529 m</td>
</tr>
<tr>
<td>Pluto (dwarf planet)</td>
<td>88 feet 6 inches</td>
<td>36.975 m</td>
</tr>
<tr>
<td>Nearest Star: Alpha Centauri</td>
<td>114.5 miles</td>
<td>184.2 km</td>
</tr>
</tbody>
</table>

8. Ask the students to let go of the measuring tape, except for Neptune and the Sun. Everyone else gathers around you (a safe distance away, as Neptune is going to orbit the Sun).

9. Using a stopwatch, notice how much time it takes Neptune to walk around the Sun while holding the measuring tape taut. How long did it take for one revolution? Record it in the data table.

10. Now ask Mercury to take their position on the tape at the appropriate distance. Time their revolution as they walk around the Sun. How long did it take? Record this in your data table.

11. How does this relate to the data you just recorded for Neptune and Mercury? You should notice that the speeds the kids were walking at were probably nearly the same, but the time was much shorter for Mercury. If you could swing them around (instead of having them walk), can you imagine how this would make Mercury orbit at a faster speed than Neptune?

12. If you have it, you can illustrate how Kepler’s 2nd Law works and relate it back to this experiment. Tie a ball to the end of a string and whirl it around in a circle. After a few revolutions, let the string wind itself up
around your finger. As the string length shortens, the ball speeds up. As the planet moves inward, the planet’s orbital speed increases. The planet’s speed decreases the further from the Sun it is located.

13. Ask one of the bigger students to take their position with the measuring tape, reminding them to keep the tape taut no matter what happens. When they start to walk around the Sun, have the Sun move with them a bit (a couple of feet is good). The planet also yanks on the Sun just as hard as the Sun yanks on the planet. Since the planet is much smaller than the Sun, you won’t see as much motion with the Sun.

14. Optional demonstration to illustrate this idea: take a heavy bag (I like to use oranges) and spin it around as you whirl around in a circle. Do you notice that you lean back a bit to balance yourself as you swing around and around? This is the same principle, just on a smaller scale. The two objects (the bag and the you) are orbiting around a common point, called the center of mass. In our real solar system, the Sun has 99.85% of the mass, so the center of mass lies inside the Sun (although not at the exact center).

15. Look at the length of your measuring tape. Find the data table you need to use in the tables. Circle the one you’re going to use or cross out the ones you’re not. Copy the distance from the Sun into the first data table.

16. Using a stopwatch, time Venus as they walk around the Sun while holding the measuring tape taut. How long did it take for one revolution? Write this in the data table. (Make sure the Sun doesn’t move much during this process like they did for the demonstration. We’re assuming the Sun is at the center when we take our data.)

17. Continue this for all the planets.

Solar System Measuring Tape Data Tables

<table>
<thead>
<tr>
<th>Planet/Object</th>
<th>Distance from the Sun (inches)</th>
<th>One Revolution Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jupiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neptune</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluto (dwarf planet)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solar System Measuring Tape Data Tables

For 100 foot / 50 m measuring tapes:

<table>
<thead>
<tr>
<th>Planet/Object</th>
<th>Distance from the Sun</th>
<th>Distance from the Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>10.4 inches</td>
<td>0.264 m</td>
</tr>
<tr>
<td>Venus</td>
<td>1 foot 7.4 inches</td>
<td>0.493 m</td>
</tr>
<tr>
<td>Earth</td>
<td>2 feet 2.9 inches</td>
<td>0.682 m</td>
</tr>
<tr>
<td>Mars</td>
<td>3 feet 4.9 inches</td>
<td>1.039 m</td>
</tr>
<tr>
<td>Jupiter</td>
<td>11 feet 7.76 inches</td>
<td>3.649 m</td>
</tr>
<tr>
<td>Saturn</td>
<td>21 feet 4.3 inches</td>
<td>6.51 m</td>
</tr>
<tr>
<td>Uranus</td>
<td>42 feet 11.5 inches</td>
<td>13.094 m</td>
</tr>
<tr>
<td>Neptune</td>
<td>67 feet 4.2 inches</td>
<td>20.529 m</td>
</tr>
<tr>
<td>Pluto (dwarf planet)</td>
<td>88 feet 6 inches</td>
<td>36.975 m</td>
</tr>
<tr>
<td>Nearest Star: Alpha Centauri</td>
<td>114.5 miles</td>
<td>184.2 km</td>
</tr>
</tbody>
</table>

For 35+ foot/10+ m measuring tapes (note the fractions for the US unit system):

<table>
<thead>
<tr>
<th>Planet/Object</th>
<th>Distance from the Sun</th>
<th>Distance from the Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>4 ¼ inches</td>
<td>0.105 m</td>
</tr>
<tr>
<td>Venus</td>
<td>7 ¾ inches</td>
<td>0.197 m</td>
</tr>
<tr>
<td>Earth</td>
<td>10 ¾ inches</td>
<td>0.272 m</td>
</tr>
<tr>
<td>Mars</td>
<td>1 foot 4 ½ inches</td>
<td>0.415 m</td>
</tr>
<tr>
<td>Jupiter</td>
<td>4 feet 8 inches</td>
<td>1.419 m</td>
</tr>
<tr>
<td>Saturn</td>
<td>8 feet 6 ½ inches</td>
<td>2.604 m</td>
</tr>
<tr>
<td>Uranus</td>
<td>17 feet 2 ¼ inches</td>
<td>5.237 m</td>
</tr>
<tr>
<td>Neptune</td>
<td>26 feet 11 ¼ inches</td>
<td>8.211 m</td>
</tr>
<tr>
<td>Pluto (dwarf planet)</td>
<td>35 feet 11 ¼ inches</td>
<td>10.79 m</td>
</tr>
<tr>
<td>Nearest Star: Alpha Centauri</td>
<td>45.8 miles</td>
<td>73.7 km</td>
</tr>
</tbody>
</table>
For 25 foot / 10 m measuring tapes:

<table>
<thead>
<tr>
<th>Planet/Object</th>
<th>Distance from the Sun</th>
<th>Distance from the Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>2.9 inches</td>
<td>0.074 m</td>
</tr>
<tr>
<td>Venus</td>
<td>5.4 inches</td>
<td>0.138 m</td>
</tr>
<tr>
<td>Earth</td>
<td>7.5 inches</td>
<td>0.191 m</td>
</tr>
<tr>
<td>Mars</td>
<td>11.5 inches</td>
<td>0.291 m</td>
</tr>
<tr>
<td>Jupiter</td>
<td>3 feet 3.1 inches</td>
<td>0.993 m</td>
</tr>
<tr>
<td>Saturn</td>
<td>5 feet 11.8 inches</td>
<td>1.822 m</td>
</tr>
<tr>
<td>Uranus</td>
<td>12 feet 0.4 inches</td>
<td>3.666 m</td>
</tr>
<tr>
<td>Neptune</td>
<td>18 feet 10.3 inches</td>
<td>5.748 m</td>
</tr>
<tr>
<td>Pluto (dwarf planet)</td>
<td>24 feet 9.4 inches</td>
<td>7.553 m</td>
</tr>
<tr>
<td>Nearest Star: Alpha Centauri</td>
<td>32 miles</td>
<td>51.6 km</td>
</tr>
</tbody>
</table>

Reading

Johannes Kepler, a German mathematician and astronomer in the 1600s, was one of the key players of his time in astronomy. Among his best discoveries was the development of three laws of planetary motion. He worked for Tycho Brahe, who had logged huge volumes of astronomical data, which was later passed onto to Kepler. Kepler took this information to design and develop his ideas about the movements of the planets around the Sun.

Kepler's 1st Law states that planetary orbits about the Sun are not circles, but rather ellipses. The Sun lies at one of the foci of the ellipse. Well, almost. Newton's Laws of Motion state that the Sun can't be stationary, because the Sun is pulling on the planet just as hard as the planet is pulling on the Sun. They are yanking on each other. The planet will move more due to this pulling because it is less massive. The real trick to understanding this law is that both objects orbit around a common point that is the center of mass for both objects. If you've ever swung a heavy bag of oranges around in a circle, you know that you have to lean back a bit to balance yourself as you swing around and around. It's the same principle, just on a smaller scale.

In our solar system the Sun has 99.85% of the mass, so the center of mass between the Sun and any other object actually lies inside the Sun (although not at the center).

Kepler's 2nd Law states that a line connecting the Sun and an orbiting planet will sweep out equal areas for a given amount of time. The planet’s speed decreases the further from the Sun it is located (actually, the speed varies inversely with the square-root of the distance, but you needn't worry about that). You can demonstrate this to the students by tying a ball to the end of a string and whirl it around in a circle. After a few revolutions, let the string wind itself up around your finger. As the string length shortens, the ball speeds up. As the planet moves inward, the planet’s orbital speed increases.
Embedded in the second law are two very important laws: conservation of angular moment and conservation of energy. Although those laws might sound scary, they are not difficult to understand. Angular momentum is distance multiplied by mass multiplied by speed. The angular momentum for one case must be the same for the second case (otherwise it wouldn’t be conserved). As the planet moves in closer to the Sun, the distance decreases. The speed it orbits the Sun must increase because the mass doesn’t change. Just like you saw when you wound the string around your finger.

Energy is the sum of both the kinetic (moving) energy and the potential energy (this is the “could” energy, as in a ball dropped from a tower has more potential energy than a ball on the ground, because it “could” move if released). For conservation of energy, as the planet’s distance from the Sun increases, so does the gravitational potential energy. Again, since the energy for the first case must equal the energy from the second case (that’s what conservation means), the kinetic energy must decrease in order to keep the total energy sum a constant value.

Kepler’s 3rd Law is an equation that relates the revolution period with the average orbit speed. The important thing to note here is that mass was not originally in this equation. Newton came along shortly after and did add in the total mass of the system, which fixed the small error with the equation. This makes sense, as you might imagine a Sun twice the size would cause the Earth to orbit faster. However, if we double the mass of the Earth, it does not affect the speed with which it orbits the Sun. Why not? Because the Earth is soooo much smaller than the Sun that increasing a planet’s size generally doesn’t make a difference in the orbital speed. If you’re working with two objects about the same size, of course, then changing one of the masses absolutely has an effect on the other.

Questions to Answer

1. If the Sun is not stationary in the center but rather gets tugged a couple of feet as the planet yanks on it, how do you think this will affect the planet’s orbit?

2. If we double the mass of Mars, how do you think this will affect the orbital speed?

2. If Mercury’s orbit is normally 88 Earth days, how long do you estimate Neptune’s orbit to be?
Lesson #2: Earth’s Magnetic Pulse

Overview: When you stare at a compass, the needle that indicates the magnetic field from the Earth appears to stand still, but we’re going to find how it fluctuates and moves by creating a super-sensitive instrument using everyday materials (for comparison, you would spend more than $100 for a scientific instrument that does the same thing).

What to Learn: Today you get to learn how to amplify tiny pulses in the Earth’s magnetic field using a laser and a couple of magnets. It’s a very cool experiment, but it does take patience to make it work right. Deep breath ... are you ready?

Materials

- Index card or scrap of cardboard
- 2 small mirrors
- 2 rare earth magnets
- Nylon filament (thin nylon thread works, too)
- 4 doughnut magnets
- Laser pointer (any kind will work – even the cheap key-chain type)
- Clean glass jar (pickle, jam, mayo, etc... any kind of jar that’s heavy so it won’t knock over easily)
- Wooden spring-type clothespin
- Hot glue gun, scissors and tape

Experiment

1. Sandwich the twine between the two rare earth magnets. These are the stronger magnets.
2. Use a tiny dab of glue on one of the magnets and attach a mirror to the magnet. Do this on the other side for the second magnet and mirror.
3. Lower the mirror-magnets into the container, leaving it hanging an inch above the bottom of the jar. Cut the twine at the mouth level of the container.
4. Glue the top of the twine to the bottom of the lid, right in the center.
5. When the glue has dried, place your mirror-magnets inside the jar and close the lid. Make sure that the mirror-magnets don’t touch the side of the jar, and are free to rotate and move.
6. You’ve just built a compass! The small magnets will align with the Earth’s magnetic field. Slowly rotate the jar, and watch to see that the mirror-magnets inside always stay in the same configuration, just like the needle of a standard compass.
7. Set your new compass aside and don’t touch it. You want the mirror-magnets to settle down and get very still.
8. You are going to build the magnet array now. Stack your four doughnut magnets together in a tall stack.
9. Fold your index card in half, and then open it back up. On one side of the crease you’re going to glue your magnets. When the magnets are attached, you’ll fold the card over so that it sits on the table like a greeting card with the magnets facing your glass jar.
10. Tape your index card down to the table as you build your magnet array. (Otherwise the paper will jump up midway through and ruin your gluing while you are working.)
11. Place a strip of glue on the bottom magnet of your stack and press it down onto the paper, gluing it into place.
12. Lift the stack off (the bottom magnet should stay put on the paper) and place glue on the bottom magnet. Glue this one next to the first.

13. Continue with the array so you have a rectangle (or square) arrangement of magnets with their poles oriented the same way. Don’t flip the magnets as you glue them, or you’ll have to start over to make sure they are lined up right.

Since we live in a gigantic magnetic field that is 10,000 times more powerful than what the instrument is designed to measure, we have to “zero out” the instrument. It’s like using the “tare” or “zero” function on a scale. When you put a box on a scale and push “zero”, then the scale reads zero so it only measures what you put in the box, not including the weight of the box, because it’s subtracting the weight of the box out of the measurement. That’s what we’re going to do with our instrument: we need to subtract out the Earth’s magnetic field so we just get the tiny fluctuations in the field.

14. Place your instrument away from anything that might affect it, like magnets or anything made from metal.

15. Fold the card back in half and stand it on the table. We’re normally going to keep the array away from the jar, or the magnet array will influence the mirror-magnets just like bringing a magnet close to a compass does. But to zero out our instrument, we need to figure out how far away the array needs to be in order to cancel out the Earth’s field.

16. Bring the array close to your jar. You should see the mirror-magnets align with the array.

17. Slowly pull the magnet array away from the compass to a point where if it were any closer, the mirror-magnets would start to follow it, but any further away and nothing happens. It’s about 12 inches away. Measure this for your experiment and write it on your array or jar so you can quickly realign if needed in the future.

18. Insert your laser pointer into the clothespin so that the jaws push the button and keep the laser on. Place it at least the same distance away as the array. You might have to prop the laser up on something to get the height just right so you can aim the laser so that it hits the mirror inside. (Note that you’ll have a reflection from the glass as well, but it won’t be nearly as bright.)

19. Find where the laser beam is reflected off the mirror and hits the wall in your room. Walk over and tape a sheet of paper so that the dot is in the middle of the paper. Use a pen and draw right on top of the dot, and mark it with today’s date.

20. Do you notice if it moves or it stays put? Sometimes the dot will move over time, and other times the dot will wiggle and move back and forth. The wiggles will last a couple of seconds to a couple of minutes, and those are the oscillations and fluctuations you are looking for!

21. Tape a ruler next to the dot so you can measure the amount of motion that the dot makes. Does it move a lot or a little when it wiggles? Two inches or six?
Reading

The reason this project works is because of tiny magnetic disturbances caused by the ripples in the ionosphere. Although these disturbances happen all the time and on a very small scale (usually only 1/10,000th of the Earth’s magnetism strength), we’ll be able to pick them up using this incredibly simple project. Your reflected laser beam acts like an amplifier and picks up the movement from the magnet in the glass.

Construction tip for experiment:

You need to use a filament that doesn’t care how hot or humid it is outside, so using one of the hairs from your head definitely won’t work. Cotton tends to be too stretchy as well. Professionals use fine quartz fibers (which are amazingly strong and really don’t care about temperature or humidity). Try extracting a single filament from a multi-stranded nylon twine length about 30” long. If you happen to have a fine selection of nylon twine handy, grab the one that is about 25 microns (0.01”) thick. Otherwise, just get the thinnest one you can find.

You can tape a wooden clothespin down to the table and insert your laser pointer inside – the jaws will push the button of the laser down so you can watch your instrument and take your measurements. When you’re ready, tape a sheet of paper to the wall where your reflected beam (reflected from the mirror, not the glass… there will be two reflected beams!) hits the wall and mark where it hits. Over periods of seconds to minutes, you’ll see deflections and oscillations (wiggles back and forth) – you are taking the Earth’s magnetic pulse!

In order for this experiment to work properly, ALL magnets (including the penny described below) need to be in the same plane. That is, they all need to be the same height from the ground. You can, of course, rotate the entire setup 90 degrees to investigate the magnetic ripples in the other planes as well!

To make this instrument even more sensitive, glue a copper penny (make sure it’s minted before 1982, or you’ll get an alloy, not copper, penny) to the glass jar just behind the magnets (opposite the laser). When your magnets move now, they will induce eddy currents in the penny that will induce a (small) magnetic field opposite of the rotation of the magnets to dampen out “noise” oscillation. In short, add a penny to the glass to make your instrument easier to read.

Also, note that big, powerful magnets will not respond quickly, so you need a lightweight, powerful magnet. Try finding a set of rare earth magnets from Radio Shack or the hardware store.

You can walk around with your new instrument and you’ll find that it’s as accurate as a compass and will indicate north. You probably won’t see much oscillation as you do this. Because the Earth has a large magnetic field, you have to “tare” the instrument (set it to “zero”) so it can show you the smaller stuff. Use the doughnut magnets about 30 centimeters away as shown in the video.

Questions to Answer

1. Does the instrument work without the magnet array?
2. Why did we use the stronger magnets inside the instrument?
3. Which planet would this instrument probably not work on?
Lesson #3: Retrograde Motion

Overview: Three planets, Mars, Mercury, and Venus, appear to move backward in the sky when tracked night after night. This motion is called “retrograde motion” and has baffled scientists for years.

What to Learn: From a top view of the solar system, the planets appear to move around the Sun in an orderly fashion. The real chaos comes in when you place yourself on one of these planets and try to watch the path that the others take while you’re orbiting the Sun. It’s predictable chaos, though, with enough math and physics under your belt (like in college). Today you’re just going to get a sneak peek at the wild world of orbital mechanics.

Materials

- Pencil
- Ruler

Experiment

1. Look at the diagram on the next page. The tiny center circle (without any dots) is the Sun. The inner circle is the Earth’s orbit, and the other circle is the orbit of Mars. The dots show where Mars and the Earth are each month. The dashed line is the sky we’d see on Earth.
2. I’ve already drawn a line with my ruler connecting the two January dots. (I know it also went through February, but that’s because it just happened to be there.)
3. Take your ruler and connect the two dots for February. Make sure to extend your lines a little past the sky before labeling the end of the line with a 2.
4. Do this for each month, connecting the dots starting with the inner Earth circle month to the corresponding Mars circle month. The March months should have a 3 label at the end.
5. If you find that your lines cross, make the lines a little longer and make the dots further away so you can tell which number goes with which line.
6. Now for the fun part: Play “connect the dots” with the numbered dots in the sky. Start with the 1, and carefully connect your dots in order. This line is the path that Mars will follow when you look at it from Earth.
Reading

If you watch the Moon, you’d notice that it rises in the east and sets in the west. This direction is called “prograde motion.” The stars, Sun, and Moon all follow the same prograde motion, meaning that they all move across the sky in the same direction.

However, at certain times of the orbit, certain planets move in “retrograde motion,” the opposite way. Mars, Venus, and Mercury all have retrograde motions that have been recorded for as long as we’ve had something to write with. While most of the time, they spend their time in the “prograde” direction, you’ll find that sometimes they stop, go backward, stop, and then go forward again, all over the course of several days to weeks.

It’s like going down a racetrack on the inside curve. You pass the outside car quickly, and from your point of view, they seem to be moving backward as you pass them.

Here are videos I created that show you what this would look like if you tracked their position in the sky each night for a year or two.

Mercury and Venus Retrograde Motion

This is a video that shows the retrograde motion of Venus and Mercury over the course of several years. Venus is the dot that stays centered throughout the video (Mercury is the one that swings around rapidly), and the bright dot is the Sun. Note how sometimes the trace lines zigzag, and other times they loop. Mercury and Venus never get far from the Sun from Earth’s point of view, which is why you’ll only see Mercury in the early dawn or early evening.

Retrograde Motion of Mars

You’ve probably heard of epicycles people used to use to help explain the retrograde motion of Mars. Have you ever wondered what the fuss was all about? Here’s a video that traces out the path Mars takes over the course of several years. Do you see our Moon zipping by? The planets, Sun, and Moon all travel along a line called the “ecliptic,” as they all are in about the same plane.

Several planets found outside our solar system (called extrasolar planets) have backward orbits. This isn’t retrograde motion, just plain old backward … something we’ve never seen before in our search for extrasolar planets!

Mars retrogrades for 72 days every 25.6 months, Jupiter for 121 days every 13.1 months, Saturn for 138 days every 12.4 months, Uranus for 151 days every 12.15 months, and Neptune for 158 days every 12.07 months.

Questions to Answer

1. During which of the months does Mars appear to move in retrograde?

2. Why does Mars appear to move backward?

3. Which planets have retrograde motion?
Lesson #4: Rocket Math

Overview: Launching rockets requires a lot complicated math, but it all starts with Newton’s Laws of Motion. We’re going to get a taste of the math behind the real rocket science.

What to Learn: Using math with rocket science experiments allow scientists to figure out important information about the rocket structure, flight, and performance before it ever leaves the ground.

Materials

- Pencil
- Paper
- Rocket or ball
- Measuring tape
- Stopwatch

Reading: Rockets are more complicated than it might first seem. For example, as a rocket burns through its fuel, it gets lighter, which makes it easier to move through the atmosphere. Also the pressure inside the combustion chamber must be higher than the outside pressure in order for the gases to escape and push out through the nozzle, which is helped by the fact that as a rocket moves up through the atmosphere, there’s less and less atmosphere for it to move through (which also means the drag force decreases). All of these things increase the acceleration (how fast speed changes when moving in a straight line) of the rocket.

Newton’s Second Law can be formally stated as the acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.

Whew… that’s a lot to remember, isn’t it? Let’s try a math equation instead that says the same thing: \(F_{\text{net}} = m a \)

\(F_{\text{net}} \) are the forces acting on the rocket. This includes weight, drag, thrust and lift for flying objects.

\(m \) is the mass of the rocket. Remember, this is changing as the rocket burns through its fuel.

\(a \) is the acceleration of the rocket. That’s how fast the rocket is changing speed if it’s going in a straight line.

Note: If you’ve never heard of net force before, know that it is the vector sum of all the forces acting on the object. A rocket has a force on it due to its weight, which points toward the center of the Earth. There’s also a force on the rocket from the atmosphere called drag, and it acts in the opposite direction to the motion of the rocket. There’s another force due from the gases exiting the nozzle, and those act in the direction of the motion of the rocket. This part isn’t really important for today’s lesson, but keep it in mind for later.

The equations that describe Newton’s Laws of Motion can be used to figure out how fast your rocket traveled based on the distance and the time you measure during its flight. You can also find out how high your rocket flew by using another set of equations. While normally these equations are reserved for high school physics students who usually have to figure out where they came from, I’m going to give you a taste of what it’s really like to use math during a science experiment.
Don’t worry too much about these questions or where they came from. Just use them as I’ve described below and in the video so you can see how a real scientist uses math to model what’s going on with their rocket.

Experiment:

You’re about to do learn how to use math to find the speed and forces on one of your rockets.

IMPORTANT: use the same rocket for the entire data table!

Also important: measure in meters for distance and measure seconds for time.

1. Find your best rocket and practice launching it a couple of times.
2. Launch your rocket horizontally. Use your measuring tape and find how far your rocket flew and a stopwatch to time how long it was in flight. Record this in your data table. You are going to estimate the speed of the rocket by using the equation: speed = distance ÷ time.
3. Now launch your rocket vertically. (Make sure you’re lying flat on your back on the ground when you launch.) Use your stopwatch to find out how long it took your rocket to hit the ground. You are going to estimate how high your rocket flew by taking the time you measured, dividing it by two (since the rocket went both up and down, we cut that time in half to find the time it took to go from its greatest height to hit the ground), and using the question: distance = ½ gt². The term “g” is 9.81 m/s².
4. Use the data table to track your results and analyze your rocket, just like a real scientist!

Rocketry Data Table: Horizontal Flight

<table>
<thead>
<tr>
<th>Trial #</th>
<th>Distance Traveled (meters)</th>
<th>Time Aloft (seconds)</th>
<th>Average Speed speed = distance ÷ time (meters/second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rocketry Data Table: Vertical Flight

<table>
<thead>
<tr>
<th>Trial #</th>
<th>Time Aloft (seconds)</th>
<th>Divide Time by 2: (seconds)</th>
<th>Calculated Maximum Rocket Flight Height (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tip: There is a simple test you can do to test to see if your rocket is stable. Tie a string around the body at the center of gravity (CG) point. (For a model rocket, make sure you've prepared it for launch, so the engine, wadding and parachute are on board.) Swing the rocket around your head in a circle. The nose points in the direction of rotation for a stable rocket. Unstable rockets will wobble, spin sideways, or go tail-first. You can fix any stability problems by lowering the center of pressure (make the fins bigger) or by moving the CG forward (adding weight to the nose).

Going Further: If you're a real math nut like I am, here’s Newton's Second Law rewritten for a rocket moving through the atmosphere: \(F_{net} = m_{exit}V_{exit} + (P_{exit} - P_{ambient}) A_{exit} \)

The “A” in the above equation is the area of the engine “throat” or the smallest area of the nozzle where gases are rushing through. The “P” terms are the difference in pressure between the outside air and the pressure of the gases exiting the nozzle. When the rocket finally reaches space, the difference in pressure goes to zero, so the equation then becomes: \(F_{net} = m_{exit}V_{exit} \)

Things to think about: Looking at rocketry from the math side of things, how could you generate enough thrust so that the amount of thrust is greater than the weight of the rocket? How big would that rocket need to be? What happens when the rocket burns through its tanks unevenly? How does the CG change in a rocket that is burning fuel? How can you make the rocket go where you want it to, and return the parts you need safely back to earth?
Lesson #5: What’s in the Sky?

Overview: Today you get to learn how to read an astronomical chart to find out when the Sun sets, when twilight ends, which planets are visible, when the next full moon occurs, and much more. This is an excellent way to impress your friends.

What to Learn: The patterns of stars and planets stay the same, although they appear to move across the sky nightly, and different stars and planets can be seen in different seasons.

Materials

- Printout of Stargazer’s Almanac
- Pencil
- Tape and scissors (optional)
- Ruler

Experiment

1. If your chart comes on two pages, you'll need to cut the borders off at the top and bottom and tape them together so they fit perfectly.
2. Use your ruler as a straight edge to help locate items as you read the chart.
3. Print out copies of the almanac by clicking the image of the Skygazer’s Almanac. You can print it full-size on two pages, or size it to fit onto a single page. Since there’s a ton of information on it, it’s best read over two pages. This is an expired calendar to practice with.
4. First, note the “hourglass” shape of the chart. Do you see how it’s skinnier in the middle and wider near the ends? Since it’s an astronomical chart that shows what’s up in the sky at night, the nights are shorter during the summer months, so the number of hours the stars are visible is a lot less than during the winter. You’ll find the hours of the night printed across the top and bottom of the chart (find it now) and the months and days of the year printed on the right and left side.
5. Can you find the summer solstice on June 20? Use your finger and start on the left side between June 17 and June 24. The 20th is between those two dates somewhere. Here’s how you tell exactly...
6. Look at the entire chart – do you see the little dots that make up little squares all over the chart, like a grid? Each dot in the vertical direction represents one day. There are eight dots on the vertical side of the box.
7. Let’s say you want to find out what time Neptune rises on June 17. Go back to June 17, which has its own little set of dots. Follow the dots with your finger until you hit the line that says Neptune Rises. Stop and trace it up vertically to the top scale to read just after 11 p.m.
8. Look again at the dot boxes. Each horizontal dot is 5 minutes apart, and every six dots there is a vertical line representing the half-hour. The line crosses between the second and third dot, so if you lived in a place where you can clearly see the eastern horizon and looked out at 11:07, you’d see Neptune just rising. Since Uranus and Neptune are so far away, though, you’d need a telescope to see them. So let’s try something you can find with your naked eye.
10. What other two planets set right afterward? (Mercury at 6:03 p.m. and Mars sets at 7:12 p.m.).
11. When does Jupiter rise? (7:32 p.m.).
12. What is Neptune doing that night of Oct. 21? (Neptune transits, or is directly overhead, at 8:07 p.m. and sets at 1:30 a.m.)
13. What other interesting things happen on Oct. 21? (Betelgeuse, one of the bright stars in the constellation Orion, rises at 9:23 p.m. Sirius, the dog star, rises at 11:06 p.m. The Pleiades, also known as the Seven Sisters, are overhead at 1:42 a.m.)

14. Let’s find out when the Moon rises on Oct. 21. You’ll find a half circle representing the Moon centered on 11:05 p.m. Which phase is the Moon at? First or third quarter? (First. You can tell if you look at the next couple of days to see if the Moon waxes or wanes. Large circles indicate one of the four main phases of the Moon.)

15. When does the Sun rise and set for Oct. 21? First, find the nearest vertical set of dots and read the time (5:30 p.m.). Now subtract out the 5-minute dots until you get to the edge. You should read three dots plus a little extra, which we estimate to be 17 minutes. Sunset is at 5:13 p.m. on Oct 21.

16. Note the fuzzy, lighter areas on both sides of the hourglass. That represents the twilight time when it’s not quite dark, but it’s not daylight either. There’s a thin dashed line that runs up and down the vertical, following the curve of the hourglass offset by about an hour and 35 minutes. That’s the official time that twilight ends and the night begins.

17. Can you find a meteor shower? Look for a starburst symbol and find the date right in the center. Those are the peak times to view the shower, and it’s usually in the wee morning hours. The very best meteor showers are when there’s also a new Moon nearby.

18. Notice how Mercury and Venus stay close by the edges of the twilight. You’ll find a half-circle symbol representing the day that they are furthest from the Sun as viewed from the Earth, which is the best date to view it. For Venus, the * indicates the day that it’s the brightest.

19. What do you think the open circle means at sunset on May 20? (New moon)

20. Students who spot the “Sun slow” or “Sun fast” marks on the chart always ask about it. It’s actually rather complicated to explain, but here’s the best way to think about it. Imagine that the vertical timeline running down the center means noon, not midnight. Do you see a second line weaving back and forth across the noon line throughout the year? That’s the line that shows the when the Sun crosses the meridian. On Feb 5, the Sun crosses that meridian at 12:14, so it’s “running slow,” because it “should have” crossed the meridian at noon. This small variation is due to the axis tilt of the Earth. Note that it never gets much more than 15 minutes fast or slow. The wavy line that represents this effect is called the Equation of Time. We’ll be using that later when we make our own sundials and have to correct for the Sun not being where it’s supposed to be.

21. Look at Mars and Saturn both setting around the same time on Aug. 14. When two event lines cross, you’ll find nearby an open circle with a line coming from the top right side, accompanied by a set of arrows pointing toward each other. This means conjunction, and is a time when you can see two objects at once. Usually the symbol isn’t right at the intersection, because one of the objects is rising or setting and isn’t clearly visible. On Aug. 14, you’ll want to view them a little before they set, so the symbol is moved to a time where you can see them both more clearly.

22. Important to note: If your area uses daylight savings time, you’ll need to add one hour to the times shown on the chart.

23. Time corrections for advanced students: This chart was made for folks living on the 40° north latitude and 90° west longitude lines (which is Peoria, Ill.).
 a. If you live near the standardized longitudes for Eastern Time (75°), Central (90°), Mountain (105°) or Pacific (120°), then you don’t have to correct the chart times you read. However, if you live a little west or east of these standardized locations, you need a correction, which looks like this:
 i. For every degree west, add four minutes to the time you read off the chart.
 ii. For every degree east, subtract four minutes from the time.
iii. For example, if you lived in Washington, D.C. (which is 77° longitude), note that this is 2° west of the Eastern Time, so you’d add 8 minutes to the time you read off the chart.

iv. Memorize your particular adjustment and always use it.

b. If your latitude isn’t 40° north, then you need to adjust the rise and set times like this:

 i. If you live north of 40°, then the object you are viewing will be in the sky for longer than the chart shows, as it will rise earlier and set later.

 ii. If you live south of 40°, then the object you are viewing will be in the sky for less time than the chart shows, as it will rise later and set earlier.

 iii. The easiest way to calculate this is to note what time an object should rise, and then watch to see when it actually appears against a level horizon. This is your correction for your location.

24. Complete the data table.

“What’s in the Sky?” Data Table

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer (date and time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>What time does Venus set on April 22?</td>
<td></td>
</tr>
<tr>
<td>When does Mars set on August 12?</td>
<td></td>
</tr>
<tr>
<td>When is the full moon in March?</td>
<td></td>
</tr>
<tr>
<td>When is the best date and time to view both Jupiter and Saturn?</td>
<td></td>
</tr>
<tr>
<td>When is the best meteor shower for the entire year?</td>
<td></td>
</tr>
<tr>
<td>Which day is the longest?</td>
<td></td>
</tr>
<tr>
<td>When do two planets rise at the same time?</td>
<td></td>
</tr>
<tr>
<td>If this calendar was for this year at your exact location, what would</td>
<td></td>
</tr>
<tr>
<td>you be looking forward to tonight?</td>
<td></td>
</tr>
</tbody>
</table>

Reading

This is one of the finest charts I’ve ever used as an astronomer, as it has so much information all in one place. You’ll find the rise and set times for all eight planets, peak times for annual meteor showers, moon phases, sunrise and set times, and it gives an overall picture of what the evening looks like over the entire year. Kids can clearly see the planetary movement patterns and quickly find what they need each night. I keep one of these posted right by the door for everyone to view all year long.
Questions to Answer

1. Is Mercury visible during the entire year?
2. In general, when and where should you look for Venus?
3. When is the best time to view a meteor shower?
4. Which date has the most planets visible in the sky?
Lesson #6: Jupiter’s Jolts

Overview: Jupiter not only has the biggest lightning bolts we’ve ever detected, it also shocks its moons with a charge of 3 million amps every time they pass through certain hotspots. Some of these bolts are caused by the friction of fast-moving clouds. Today you get to make your own sparks and simulate Jupiter’s turbulent storms.

What to Learn: Electrons are too small for us to see with our eyes, but there are other ways to detect something’s going on. The proton has a positive charge, and the electron has a negative charge. Like charges repel and opposite charges attract.

Materials

- Foam plate
- Foam cup
- Wool cloth or sweater
- Plastic baggie
- Aluminum pie pan
- Aluminum foil
- Film canister or M&M container
- Nail (needs to be a little longer than the film canister)
- Hot glue gun or tape
- Water

Experiment

1. Lay the aluminum pie pan in front of you, right-side up.
2. Glue the foam cup to the middle of the inside of the pan.
3. Lay the plate on the table, upside down. Place the pie pan (don’t glue it!) on top of the plate, back-to-back. Set aside.
4. Insert the nail through the middle of the film canister lid. Wrap the bottom of the film canister with aluminum foil. Tape the foil into place.
5. Fill the canister nearly full of water.
6. Snap on the lid, making sure that the nail touches the water.
7. Rub the foam plate with the wool for at least a minute to really charge it up. Place the plate upside down carefully on the table.
8. Put the pie pan back on top of the foam plate. The plate has taken on the charge from the foam plate.
9. Touch the pie pan with a finger … did you feel anything?
10. Use the cup as a handle and lift the pie pan up.
11. Touch the pan with your finger, and you should feel and see a spark (turn down the lights to make the room dark).
12. Charge the foam plate again and set the pie pan back on top to charge it up. (Make sure you’re lifting the pie pan only by the foam cup, or you’ll discharge it accidentally.)
13. Hold the film canister by the aluminum foil and touch the charged pie pan to the nail.
14. Rub the foam plate with the wool again to charge it up. Set the pie pan on the foam plate to charge the pan. Now lift the pie pan and touch the pan to the nail. Do this a couple of times to really get a good charge in the film canister.
15. Discharge the film canister by touching the foil with one finger and the nail with the other. Did you see a spark?
16. The wool gives the plate a negative charge. You can use a plastic bag instead of the wool to give the foam plate a positive charge.
17. Complete the data table.

Jupiter’s Jolts Data Table

For the first column, describe which object you are charging and how. For example, is it the foam plate with wool, or is it the jar with the plate? For the second column, if you’re charging the plate with wool, then time yourself to see how long you rubbed it for and write this down. If you’re charging the jar, then write in how many times you touched the plate to the jar and record it.

<table>
<thead>
<tr>
<th>Item/Object</th>
<th>How long did you charge it for? (measure in seconds or number of times)</th>
<th>Did it spark?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reading

If you rub a balloon on your head, the balloon becomes filled up with extra electrons, and now has a negative charge. Try the following experiment to create a temporary charge on a wall: Bring the balloon close to the wall until it sticks.

Opposite charges attract right? So, is the entire wall now an opposite charge from the balloon? No. In fact, the wall is not charged at all. It is neutral. So why did the balloon stick to it?
The balloon is negatively charged. It created a temporary positive charge when it got close to the wall. As the balloon gets closer to the wall, it repels the electrons in the wall. The negatively charged electrons in the wall are repelled from the negatively charged electrons in the balloon.

Since the electrons are repelled, what is left behind? Positive charges. The section of wall that has had its electrons repelled is now left positively charged. The negatively charged balloon will now “stick” to the positively charged wall. The wall is temporarily charged because once you move the balloon away, the electrons will go back to where they were and there will no longer be a charge on that part of the wall.

This is why plastic wrap, Styrofoam packing popcorn, and socks right out of the dryer stick to things. All those things have charges and can create temporary charges on things they get close to.

If you rub a balloon all over your hair, the Triboelectric Effect causes the electrons to move from your head to the balloon. But why don’t the electrons go from the balloon to your head? The direction of electron transfer has to do with the properties of the material itself. And the balloon-hair combination isn’t the only game in town.

Electrons move differently depending on the materials that are rubbed together. A balloon takes on a negative charge when rubbed on hair. Today, the kids are going to find when a foam plate is rubbed with wool, the plate takes on electrons and creates a negative charge on the plate. To give the plate a positive charge, kids can rub it with a plastic bag.

The Triboelectric Series is a list that ranks different materials according to how they lose or gain electrons. A rubber rod rubbed with wool produces a negative charge on the rod, however an acrylic rod rubbed with silk creates a positive charge on the rod. A foam plate often has a positive charge when you slide one off the stack, but if you rub it with wool it will build up a negative charge.

Near the top of the list are materials that take on a positive charge, such as air, human skin, glass, rabbit fur, human hair, wool, silk, and aluminum. Near the bottom of the list are materials that take on a negative charge, such as amber, rubber balloons, copper, brass, gold, cellophane tape, Teflon, and silicone rubber. Scientists developed this list by doing a series of experiments, very similar to the ones we’re about to do.

Questions to Answer

1. What happens if you hold the nail and charge the aluminum foil?

2. Can you see electrons? Why or why not?
Lesson #7: Moons of Jupiter

Overview: On a clear night when Jupiter is up, you’ll be able to view the four moons of Jupiter (Europa, Ganymede, Io, and Callisto) and the largest moon of Saturn (Titan) with only a pair of binoculars. The question is: Which moon is which? This lab will let you in on the secret to figuring it out.

Suggested Time: 30-45 minutes

What to Learn: You get to learn how to locate a planet in the sky with a pair of binoculars, and also be able to tell which moon is which in the view.

Materials (per lab group)

- Printout of corkscrew graph
- Pencil
- Binoculars (optional)

Experiment

1. Look at your corkscrew satellite graph. These are common among astronomers for both Saturn and Jupiter. Notice how Saturn has a lot more wavy lines than Jupiter. We’re going to focus on Jupiter for the first part of this lab. Jupiter’s graph is the one on the left with Ganymede as one of the moons.
2. The wavy lines represent four of Jupiter’s biggest moons: Ganymede, Callisto, Europa, and Io. The central two lines for a band is the width of Jupiter itself. If you see any gaps in the wavy lines, those are times when the moon is behind Jupiter. Each bar across that corresponds to a number is an entire day. The width of the column represents how far away each moon is from Jupiter. Notice at the top it says East and West.
3. Draw a circle that represents Jupiter.
4. Notice the largest waves are made by Callisto. Who makes the smallest waves? (Io.)
5. Look at Dec 4th. Which moons are on which side of Jupiter? (Ganymede is the furthest east, and Io is closer to the planet, still on the east side. On the west, Europa is closer to Jupiter than Callisto.)
6. Do you see how the moons around Jupiter look like this on Dec. 4th?

```
Jupiter
Ganymede

Io

Europa

Callisto
```

7. Look at Dec 24. Do you see how the moons of Jupiter look like this?

```
Jupiter
Callisto

Ganymede

Io

Europa
```

8. Look at Dec. 16. What do the moons of Jupiter look like? Draw it below:

9. Complete the data table below.
Moons of Jupiter Data Table

<table>
<thead>
<tr>
<th>Date</th>
<th>Draw Jupiter and its four moons:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 11</td>
<td></td>
</tr>
<tr>
<td>Dec 18</td>
<td></td>
</tr>
<tr>
<td>Dec 13</td>
<td></td>
</tr>
<tr>
<td>Dec 22</td>
<td></td>
</tr>
</tbody>
</table>

Reading

Jupiter's Rings and Moons

Jupiter's moons are threadlike when compared with Saturn's. Also, unlike Saturn's rings, Jupiter's rings come from ash spewed out from the active volcanoes of its moons. Since Jupiter is so large, its gravity likes to catch things. When a volcano shoots its ash-snow up, Jupiter grabs it and swirls it in on itself. The moons are constantly replenishing the rings, which is why they are so much smaller than Saturn's and much harder to detect (you won't see them with binoculars or a backyard telescope).

If you're doing the binocular portion of this lab in the evening, the numbers on binoculars refer to the magnification and the lens at the end. For example, 7×50 means you're viewing the sky at 7X, and the lenses are at 50mm. Most people can easily hold up to 10×50s before their arms get tired. Remember, you're looking up, not out or down as in normal terrestrial daytime viewing.

Saturn's Rings and Moons
Galileo Galilei was the first to point a telescope at the sky, and the first to glance at the rings of Saturn in 1610. In the 1980s, the Voyager 1 and Voyager 2 spacecraft flew by, giving us our first real images of the rings of Saturn. Some of the biggest mysteries in our solar system are: What are the rings made up of, and why?

The Cassini-Huygens Mission answered the first question: The rings are made of billions of particles ranging from dust-sized icy grains to a couple of mountain-sized chunks. Actually, Saturn's rings are an optical illusion. They are not solid, but rather a blizzard of water-ice particles mixed with dust and rock fragments, and each piece orbits Saturn like a little a moon. These billions of particles race around Saturn in tracks, and are herded into position by moons that also orbit within the rings ("shepherd" moons). Shepherd moon Pan orbits in the Encke gap, Daphnis orbits in the Keeler gap, Atlas orbits in the A ring, Prometheus in the F ring, and Pandora in the F ring. These moons keep the gaps open with their gravity.

The second question is harder to answer, but the latest news is that the rings are pieces of comets, asteroids or shattered moons that broke apart before they ever reached Saturn. Although each ring orbits at a different speed around the planet, the Cassini spacecraft had to slow down to 75,000 mph before it dropped into the rings to orbit around the planet.

While the rings are wide enough to see with a backyard telescope, the main rings (A, B and C) are paper-thin, only 10 meters (33 feet) thick.

Cassini found that a great plume of icy material blasting from the moon Enceladus is a major source of material for the expansive E ring. Additionally, Cassini has found that most of the planet's small, inner moons appear to orbit within partial or complete rings formed from particles blasted off their surfaces by impacts of micrometeoroids.

Questions to Answer

1. Find a date that has all four moons on one side of Jupiter.
2. When is Callisto in front of Jupiter and Io behind Jupiter at the same time?
3. Are the images you’ve drawn in the table what you’d expect to see in binoculars, or are they upside down, mirrored, or inverted?
Lesson #8: Solar Viewers

Overview: You are going to start observing the Sun and tracking sunspots across the Sun using one of two different kinds of viewers so you can figure out how fast the Sun rotates.

What to Learn: Sunspots are dark, cool areas with highly active magnetic fields on the Sun's surface that last from hours to months. They are dark because they aren't as bright as the areas around them, and they extend down into the Sun as well as up into the magnetic loops.

Materials

- Tack
- 2 index cards (any size)
- Baader film from Draco Productions
 http://www.dracoproductions.net

Experiment

We're going to learn two different ways to view the Sun. First is the pinhole projector and the second is using a special film called a Baader filter. The quickest and simplest way to do this is to build a super-easy pinhole camera that projects an image of the Sun onto an index card for you to view.

If the Sun is not available, you can use images from a satellite that’s pointed right at the Sun while orbiting around the Earth called “SOHO.” SOHO gets clear, unobstructed views of the Sun 24 hours a day, since it’s above the atmosphere of the Earth. Download the very latest image of the Sun from NASA’s SOHO page (choose the SDO/HMI Continuum filter for the best sunspot visibility) and hand them out to the students to track the sunspots.
 http://sohowww.nascom.nasa.gov/data/realtime-images.html

Solar Pinhole Projector

1. With your tack, make a small hole in the center of one of the cards.
2. Stack one card about 12” above the other and go out into the Sun.
3. Adjust the spacing between the cards so a sharp image of the Sun is projected onto the lower paper.
4. The Sun will be about the size of a pea.
5. You can experiment with the size of the hole you use to project your image.
6. What happens if your hole is really big? Too small?
7. What if you bend the lower card while viewing? What if you punch two holes? Or three?

Baader Filter

1. Using a Baader filter, you’re going to look straight through the filter right at the Sun. Put the filter between you and the Sun, right up close to your eye and look through it. It takes a little while to get the hang of seeing the Sun through this filter, but it’s totally worth it.

Taking Data:
1. Using either the Baader filter or the solar pinhole projector (or both), you will track the sunspot activity using the mapping grid. You will be charting the Sun for two weeks using the mapping grid.

2. Each day, step outside at the same time and look at the Sun using one of the two filter methods.

3. Draw what you see on the mapping grid.

4. Draw the sunspot(s) with the date of the month next to it. For example, on March 13, write a “13” right next to the sunspot picture you drew. If there’s more than one sunspot, pick the largest one to track. If you’d like to track all of them, label them A-13, B-13, C-13...etc. The next day, label the set A-14, B-14, C-14. For multiple sunspots, use one mapping grid per day.

Mapping Grid
Astrophysics not only looks at nearby planets and distant stars, it also deals with the center of our solar system: the Sun. Our Sun is not quite a sphere (it’s a little flat on one side), which actually made the initial calculations of Mercury’s orbit incorrect when we estimated it to be a perfect ball. Our Sun is a G-type star, and recent measurements indicate that our Sun is brighter than 85% of the stars in our own galaxy. It takes light about 8 minutes to travel from the Sun to the Earth, meaning that if the Sun were to suddenly and magically disappear, we wouldn’t know about it for 8 minutes.

The Sun is made of hot plasma and is 1.3 million times the size of our Earth. The Sun holds 99% of the mass of our solar system, but only has 1% of the momentum. It’s 74% hydrogen and 24% helium, with trace amounts of oxygen, carbon, iron, and neon. Scientists split the incoming light into a giant 40-foot rainbow and looked for signs of which elements are burning through a special instrument called a spectrometer (you’ll be building one of these in this section) to figure out the Sun’s composition.
With a 15 million °C core, the Sun is not on fire, but rather generates heat by smacking protons together and getting a puff of energy through a process called nuclear fusion. We can’t directly observe the core of the Sun, but we can figure out what’s going on inside by watching the patterns on the surface. You’ll learn more about this in the activity that covers helioseismology. The surface temperature of the Sun is about 5500°C, so it cools considerably when the gases bubble up to the surface.

The Sun rotates differentially, since it’s not solid but rather a ball of hot gas and plasma. The equator rotates faster than the poles, and in one of the experiments in this section, you’ll actually get to measure the Sun’s rotation. This differential rotation causes the magnetic fields to twist and stretch. The Sun has two magnetic poles (north and south) that swap every 11 years as the magnetic fields reach their breaking point, like a spinning top that’s getting tangled up in its own string. When they flip, it’s called “solar maximum,” and you’ll find the most sunspots dotting the Sun at this time.

You know you’re not supposed to look at the Sun, so how can you study it safely? I’m going to show you how to observe the Sun safely using a very inexpensive filter. I actually keep one of these in the glove box of my car so I can keep track of certain interesting sunspots during the week!

The visible surface of the Sun is called the photosphere, and is made mostly of plasma (electrified gas) that bubbles up hot and cold regions of gas. When an area cools down, it becomes darker (called sunspots). Solar flares (massive explosions on the surface), sunspots, and loops are all related the Sun’s magnetic field. While scientists are still trying to figure this stuff out, here’s the latest of what they do know...

The Sun is a large ball of really hot gas – which means there are lots of naked charged particles zipping around. And the Sun also rotates, but the poles and the equator move at different speeds (don’t forget – it’s not a solid ball but more like a cloud of gas). When charged particles move, they make magnetic fields (that’s one of the basic laws of physics). And the different rotation rates allow the magnetic fields to “wind up” and cause massive magnetic loops to eject from the surface, growing stronger and stronger until they wind up flipping the north and south poles of the Sun (called ‘solar maximum’). The poles flip every 11 years.

The Sun rotates, but because it’s not a solid body but a big ball of gas, different parts of the Sun rotate at different speeds. The equator (once every 27 days) spins faster than the poles (once every 31 days). Sunspots are a great way to estimate the rotation speed.

Sunspots usually appear in groups and can grow to several times the size of the Earth. Galileo was the first to record solar activity in 1613, and was amazed how spotty the Sun appeared when he looked at the projected image on his table.

There have been several satellites especially created to observe the Sun, including Ulysses (launched 1990, studied solar wind and magnetic fields at the poles), Yohkoh (1991-2001, studied X-rays and gamma radiation from solar flares), SOHO (launched 1995, studies interior and surface), and TRACE (launched 1998, studies the corona and magnetic field).

Questions to Answer

1. How many longitude degrees per day does the sunspot move?
2. Do all sunspots move at the same rate?
3. Did some of the sunspots change size or shape, appear or disappear?
Lesson #9: Cosmic Ray Detector

Safety Alert! You’ll be working with hot glue guns, toxic chemicals, glassware that can shatter, and finger-burning-cold dry ice. This is no time to mess around in the lab. Stay alert and work carefully to get your experiment to work.

Materials

- Rubbing alcohol
- Clean glass jar
- Black felt
- Hot glue gun
- Magnet
- Flashlight
- Scissors
- Dry ice
- Goggles
- Heavy gloves for handling the dry ice (adults only)

Experiment

You will be making a special cloud chamber that holds alcohol gas inside. When you hold the jar in your hands, you warm it slightly and cause the air inside to get saturated with alcohol vapor. When the alpha particles (cosmic rays) zip through this portion of the jar, they quickly condense the alcohol and create spider-webby vapor trails. Kind of like when a jet flies through the air – you can’t always see the jet, but the cloud vapor trails streaming out behind stay visible for a long time. In our case, the vapor trails are visible for only a couple of seconds.

1. Cut your felt to the size of the bottom of your jar. Glue the felt to the bottom of the jar.
2. Cut out another felt circle the size of the lid and glue it to the inside surface of the lid.
3. Cut a third felt piece, about 2 inches wide, and line the inside circumference of the jar, connecting it with the bottom felt. Glue it into place.
4. Strap goggles on your face. No exceptions.
5. Very carefully pour a tablespoon or two of the highest concentration of rubbing alcohol onto the felt in the jar. You don’t need much. Swirl it around to distribute it evenly. Do the same for the lid. All the felt pieces should be thoroughly saturated. Cap the jar and leave it for ten minutes while your teacher explains about dry ice (see safety precautions above under Important Project Considerations).
6. Your teacher is coming around with the dry ice. Remove the lid and your teacher will place a small piece of dry ice right on the lid. Invert the jar right over the lid. Leave the jar upside down.
7. **DO NOT SCREW ON THE CAP TIGHTLY!** Leave it loose to allow the pressure to escape.
8. Sit and wait and watch carefully for the tiny, thin, threadlike vapor trails.
9. What do you think the magnet is for? (Hint: Keep it outside the jar.)
Reading

Cosmic rays have a positive charge, as the particles are usually protons, though one in every 100 is an electron (which has a negative charge) or a muon (also a negative charge, but 200 times heavier than an electron). On a good day, your cosmic ray indicator will blip every 4-5 seconds. These galactic cosmic rays are one of the most important problems for interplanetary travel by crewed spacecraft.

Most cosmic rays zoom to us from extrasolar sources (stars that are outside our solar system but inside our galaxy) such as high-energy pulsars, grazing black holes, and exploding stars (supernovae). We’re still figuring out whether some cosmic rays started from outside our own galaxy. If they are from outside our galaxy, it means that we’re getting stuff from quasars and radio galaxies, too!

Cosmic rays are fast-moving, high-energy, charged particles. The particles can be electrons, protons, the nucleus of a helium atom, or something else. In our case, the cosmic rays we’re detecting are “alpha particles.” Alpha particles are actually high-speed helium nuclei (helium nuclei are two protons and two neutrons stuck together). They were named “alpha particles” long before we knew what they were made of, and the name just kind of stuck.

Did you know that your household smoke alarm emits alpha particles? Most smoke detectors contain a small bit (around 1/5,000th of a gram) of Americium-241, which emits an alpha particle onto a detector. As long as the detector sees the alpha particle, the smoke alarm stays quiet. However, since alpha particles are easy to block, when smoke gets in the way and blocks the alpha particles from reaching the detector, you hear the smoke alarm scream.

Alpha particles are pretty heavy and slow, and most get stopped by just about anything, like a sheet of paper or your skin. Because of this, alpha particles are not something people get very excited about, unless you actually eat the smoke detector and ingest the material (which is not recommended).

Both brick buildings as well as people emit beta particles. Beta particles are actually high-speed electrons or positrons (a positron is the antimatter counterpart to the electron), and they are quick, fast, and light. When an electron hit the foil ball, it traveled down and charged the foil leaves, which deflected a tiny bit inside the electroscope. A beta particle has a little more energy than an alpha particle, but you can still stop it in its tracks by holding up a thin sheet of plastic (like a cutting board) or tinfoil.

Important Project Considerations:

After creating your detector: You can bring your alpha particle detector near a smoke alarm, an old glow-in-the-dark watch dial or a Coleman lantern mantel. You can go on a hunt around your house to find where the particles are most concentrated. If you have trouble seeing the trails, try using a flashlight and shine it on the jar at an angle.

You will also be working with dry ice. The dry ice works with the alcohol to get the vapor inside the jar at just the right temperature so it will condense when hit with the particles. Note that you should NEVER TOUCH DRY ICE WITH YOUR BARE HANDS. Always use gloves and tongs and handle very carefully. Keep out of reach of children - the real danger is when kids think the ice is plain old water ice and pop it in their mouth.

If your dry ice comes in large blocks, the easiest way to break a large chunk of dry ice into smaller pieces is to insert your hands into heavy leather gloves, wrap the dry ice block in a few layers of towels, and hit with a hammer. Make sure you wrap the towels well enough so that when the dry ice shatters, it doesn’t spew pieces all over. Use a metal pie plate to hold the chunks while you’re working with them. Store unused dry ice in a paper bag.
in a cooler or the coldest part of the freezer. Dry ice freezes at -109 degrees Fahrenheit. Most freezers don’t get that cold, so expect your dry ice to disappear soon.

Questions to Answer

1. How does this detector work?
2. Do all particles leave the same trail?
3. What happens when the magnet is brought close to the jar?
Lesson #10: Spectroscopes

Overview: Spectrometers (spectroscopes) are used in chemistry and astronomy to measure light. In astronomy, we can find out about distant stars without ever traveling to them, because we can split the incoming light from the stars into their colors (or energies) and "read" what they are made up of (what gases they are burning) and thus determine what they are made of.

What to Learn: In this experiment, you'll make a simple cardboard spectrometer that will be able to detect all kinds of interesting things!

SPECIAL NOTE: This instrument is NOT for looking at the Sun. Do NOT look directly at the Sun. But you can point the tube at a sheet of paper that has the Sun's reflected light on it.

Materials:

Easy Spectrometer

- Old CD
- Razor
- Index card
- Cardboard tube at least 10 inches long

Advanced Spectrometer (Calibrated)

- Cardboard box (ours is 10" x 5" x 5", but anything close to this will work fine)
- Diffraction grating
- 2 razor blades (with adult help)
- Masking tape
- Ruler
- Photocopy of a ruler (or sketch a line with 1 through 10 cm markings on it, about 4cm wide)

Easy Spectrometer:

1. A CD has a diffraction grating built into it. We're going to use a CD instead of a diffraction grating for this experiment.
2. Cut a clean slit less than 1 mm wide in an index card or spare piece of cardboard.
3. Tape it to one end of the tube.
4. Align your tube with the slit horizontally, and on the top of the tube at the far end cut a viewing slot about one inch long and ½ inch wide.
5. Cut a second slot into the tube at a 45-degree angle from the vertical away from the viewing slot.
6. Insert the CD into this slot so that it reflects light coming through the slit into your eye (viewing slot).
7. Aim the 1 mm slit at a light source such as a fluorescent light, neon sign, light bulb, computer screen, television, night light, candle, fireplace... any light source you can find EXCEPT THE SUN.
8. Look through the open hole at the light reflected off the compact disk (look for a rainbow in most cases) inside the cardboard tube.
9. Complete the data table.
Advanced Spectrometer (Calibrated)

1. Using a small box, measure 4.5 cm from the edge of the box. Starting here, cut a hole for the double-razor slit that is 1.5 cm wide 3 cm long.

2. From the other edge (on the same side), cut a hole to hold your scale that is 11 cm wide and 4 cm tall.

3. Print out the scale and attach it to the edge of the box.

4. Very carefully line up the two razors, edge-to-edge, to make a slit and secure into place with tape.

5. On the opposite side of the box, measure over 3 cm and cut a hole for the diffraction grating that is 4 cm wide and 3 cm tall.

6. Tape your diffraction grating over the hole.

7. Aim the razor slit at a light source such as a fluorescent light, neon sign, sunset, light bulb, computer screen, television, night light, candle, fireplace ... any light source you can find. Put the diffraction grating up to your eye and look at the inner scale. Move the spectrometer around until you can get the rainbow to be on the scale inside the box.

How to Calibrate the Spectrometer with the Scale

8. Inside your box is a scale in centimeters. Point your slit to a fluorescent bulb, and you'll see three lines appear (a blue, a green, and a yellow-orange line). The lines you see in the fluorescent bulb are due to mercury superimposed on a rainbow continuous spectrum due to the coating. Each of the lines you see is due to a particular electron transition in the visible region of Hg (mercury).
 1. blue line (435 nm)
 2. green line (546 nm),
 3. yellow orange line (579 nm)

If you look at a sodium vapor street light you'll see a yellow line (actually 2 closely spaced) at 589 nm.

9. Line the razor slits along the length of the fluorescent tube to get the most intense lines. Move the box laterally (the lines will move due to parallax shift).

10. Take scale readings at the extreme of these movements and take the average for the scale reading. For instance, if the blue line averages to the 8.8 cm value, this corresponds to the 435 nm wavelength. Do this for the other 2 lines.

11. On graph paper, plot the cm (the ruler scale values) on the vertical axis and the wavelength (run this from 400-700 nm) on the horizontal axis.

12. Draw the best straight lines through the 3 points (4 lines if you use the Na (sodium) street lamp). You've just calibrated the spectrometer!

13. Line the razor slits up with another light source. Notice which lines appear and where they are on your scale. Find the value on your graph paper. For example, if you see a line appear at 5.5 cm, use your finger to follow along to the 5.5 cm until you hit the best-fit line, and then read the corresponding value on the wavelength axis. You now have the wavelength for the line you've just seen!

Notes on Calibration and Construction: If you swap out different diffraction gratings, you will have to re-calibrate. If you make a new spectrometer, you will have to re-calibrate to the Hg (mercury) lines for each new spectrometer. If you do remake the box, use a scale that is translucent so you can see the numbers. If you use a clear plastic ruler, it may let in too much light from the outside making it difficult to read the emission line.
Spectrometer Data Table

<table>
<thead>
<tr>
<th>Light Source</th>
<th>Draw what you see:</th>
<th>Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reading

Diffraction gratings are found in insect (including butterfly) wings, bird feathers, and plant leaves. While I don’t recommend using living things for this experiment, I do suggest using an old CD. That’s how we’re going to build the *Easy Spectrometer*.

CDs are like a mirror with circular tracks that are very close together. The light is spread into a spectrum when it hits the tracks, and each color bends a little more than the last. To see the rainbow spectrum, you’ve got to adjust the CD and the position of your eye so the angles line up correctly (actually, the angles are perpendicular).

You’re looking for a spectrum (think of a rainbow). –Depending on what you look at (neon signs, chandeliers, incandescent bulbs, fluorescent bulbs, halogen lights, etc.), you’ll see different colors of the rainbow.

For the *Advanced Spectrometer*, we’re actually going to calibrate it by plotting information on a graph and using a diffraction grating to make it more precise. It’s much more like the instrument that scientists use in their labs.
Scientist use spectroscopes (spectrometers) to collect a small sample of light and test it to see what made the light. As the light passes through the diffraction grating, it gets split into different bands of light, and you’ll see these as different wavelengths, or colors of light.

Scientists can figure out what fuel a star is burning, the age of the star, the composition of the star, how fast it’s moving, and whether it’s moving toward or away from Earth. For example, when hydrogen burns, it gives off light, but not in all the colors of the rainbow, only very specific colors in red and blue. It’s like hydrogen’s own personal fingerprint, or light signature.

While the spectrometers we’re about to make aren’t powerful enough to split starlight, they’re perfect for using with the lights in your house, and even with an outdoor campfire. Next time you’re out on the town after dark, bring this with you to peek different types of lights – you’ll be amazed how different they really are.

SPECIAL NOTE: This instrument is NOT for looking at the Sun. Do NOT look directly at the Sun. But you can point the tube at a sheet of paper that has the Sun’s reflected light on it.

How to Tell Which Elements are Burning

For example, if you were to view hydrogen burning with your spectroscope, you’d see the bottom appear in your spectrometer:

Notice how one fits into the other, like a puzzle. When you put the two together, you’ve got the entire spectrum.

What’s the difference between the two? The upper picture (absorption spectrum of hydrogen) is what astronomers see when they use their spectrometers on distant stars when looking through the earth’s atmosphere (a cloud of gas particles). The lower picture (emission spectrum of hydrogen) is what you’d see if you were looking directly at the source itself.

Note - Do NOT use your spectrometer to look at the Sun! When astronomers look at stars, they have computers look for them - they aren’t putting their eye on the end of a tube.

Each element has its own special “signature,” unique as a fingerprint, that it leaves behind when it burns. This is how we can tell what’s on fire in a campfire.

For example, here’s what you’d see for the following elements:
Just get the feel for how the signature changes depending on what you're looking at. For example, a green campfire is going to look a lot different from a regular campfire, as you're burning several elements in addition to just carbon. When you look at your campfire with your spectroscope, you're going to see all the signatures at the same time. Imagine superimposing all four sets of spectral lines above (carbon, neon, magnesium, and nitrogen) into one single spectrum... it's going to look like a mess! It takes a lot of hard work to untangle it and figure out which lines belong to which element. Thankfully, these days, computers are more than happy to chug away and figure most of it out for us.
Here's the giant rainbow of absorption lines astronomers see when they point their instruments at the Sun:

Do you see all the black lines? Those are called emission lines, and since astronomers have to look through a lot of atmosphere to view the Sun, there's a lot of the spectrum missing (shown by the black lines), especially corresponding to water vapor. The water absorbs certain wavelengths of light, which corresponds to the black lines.

Questions to Answer

1. Name three more light sources that you think might work with your spectroscope.

2. Why is there a slit at the end of the tube instead of leaving it open?
Lesson #11: Fire & Optics

Because this activity involves fire, make sure you do this on a flame-proof surface and not your dining room table! Good choices are your driveway, cement parking lot, the concrete sidewalk, or a large piece of ceramic tile. Don't do this experiment in your hand, or you're in for a hot, nasty surprise.

Overview: Today you get to concentrate light, specifically the heat, from the Sun into a very small area. Normally, the sunlight would have filled up the entire area of the lens, but you're shrinking this down to the size of the dot.

What to Learn: Magnifying lenses, telescopes, and microscopes use this idea to make objects appear different sizes by bending the light. When light passes through a different medium (from air to glass, water, a lens …) it changes speed and usually the angle at which it's traveling. A prism splits incoming light into a rainbow because the light bends as it moves through the prism. A pair of eyeglasses will bend the light to magnify the image.

Materials

- Sunlight
- Glass jar
- Nail that fits in the jar
- 12” thread
- Hair from your head
- 12” string
- 12” fishing line
- 12” yarn
- Paperclip
- Magnifying glass
- Fire extinguisher
- Adult help

Experiment

1. You're going to concentrate the power of the Sun on a flammable surface.
2. Please do this on a fireproof surface! This experiment will damage tables, counters, carpets, and floors. Do this experiment on a fireproof surface, like concrete or blacktop.
3. Hold the magnifier above the leaf and bring it down toward the leaf until you see a bright spot form on its surface. Adjust it until you see the light as bright and as concentrated as possible. First, you'll notice smoke, then a tiny flame as the leaf burns.
4. You are concentrating the light, specifically the heat, from the Sun into a very small area. Normally, the sunlight would have filled up the entire area of the lens, but you're shrinking this down to the size of the dot that's burning the leaf.
5. Thermoelectric power plants use this principle to power entire cities by using this principle of concentrating the heat from the Sun.
6. Never look through anything that has lenses in it at the Sun, including binoculars or telescopes, otherwise what's happening to the leaf right now is going to happen to your eyeball.
7. Now for the next part of the lab, do not use water bottles – you want something that doesn't melt, like a glass jar from the pickles or the mayo.
8. Remove the lid and punch a hole in the center. Use a drill with a ¼” drill bit or smaller, or a hammer and nail.
9. Screw the lid on the jar.
10. Tie one end of the thread to the paperclip.
11. Poke the other end of the thread inside the hole on the lid.
12. Unscrew the lid and tie a nail to the other end of the thread. You want the nail to be hanging above the bottom of the jar by an inch or two, so adjust the height as needed.
13. Bring your jar outside.
14. Question: *Without breaking the glass or removing the lid, how can you get the nail to drop to the bottom of the jar?*

Fire & Optics & Eyes Data Table

<table>
<thead>
<tr>
<th>Material for Suspending Nail</th>
<th>How Long Did It Take to Drop?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(measure in seconds)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reading

Magnifying lenses, telescopes, and microscopes use this idea to make objects appear different sizes by bending the light. When light passes through a different medium (from air to glass, water, a lens ...) it changes speed and usually the angle at which it’s traveling. A prism splits incoming light into a rainbow because the light bends as it moves through the prism. A pair of eyeglasses will bend the light to magnify the image.

Questions to Answer

1. What happened to the leaf? Why?
2. How did you get the nail to drop?
3. Which material ignited the quickest?
Lesson #12: Reflector and Refractor Telescopes

Overview: Telescopes aren’t nearly as complicated as they seem. We’re going to build two different kinds of telescopes: the refractor (which has only lenses) and the reflector (which has lenses and mirrors) telescopes.

What to Learn: Your lenses are curved pieces of glass or plastic designed to bend (refract) light. A simple lens is just one piece, and a compound lens is when you stack two or more together, like inside a camera. You can arrange your lenses in different ways to get different types of magnification.

Do not use this telescope to look at the Sun! This telescope is for looking at the moon, distant terrestrial objects, and flashlights with their light intensity stepped down and passed through a wax filter.

Materials
- Index card
- 3 clothespins
- Popsicle sticks
- 2 meter sticks
- Bright light source
- Two double-convex lenses
- Concave mirror
- Small flat mirror (like a mosaic mirror)
- Large paper clip
- Black garbage bag
- Rubber band
- Waxed paper
- Masking tape
- Hot glue gun
- Scissors

Experiment

1. The videos for these labs are longer than usual, as I’ve included bonus content about building optical benches that include complete instructions for mounting lenses and mirrors to the rail.
2. To make a moon light source, stretch a section of a garbage bag over the head of the flashlight. You can cut out a crescent moon and line the cut section with waxed paper on the inside. Attach the garbage bag to the flashlight with a rubber band with the waxed paper on the inside.
3. Mount a double-convex lens to a clothespin as shown in the Optical Bench video. You need two of these for the refractor telescope. Make sure your two lenses magnify about the same amount.
4. Make an optical rail and mount one of the lenses near one end of the rail. You’ll adjust it soon when you bring the moon shape into focus.
5. Place an index card near the middle of the optical rail. Don’t attach it to the meter stick itself.
6. Place your flashlight about six feet away from the table so it shines through the lens and onto the index card.
7. Adjust the distance the lens is from the index card and bring the moon into focus.
8. At this point, if you have different-sized lenses, you can hold the second one near the first so you have two moons on the card. Do you notice the difference in brightness in moons? If your lenses are different sizes, the larger lens will make a brighter image because it's got more light-gathering ability. Remove the second lens - we were just demonstrating this concept with it.

9. Slide the optical rail around so that the moon on the index card is right over the meter stick.

10. Take the second lens and insert it into the rail on the other side of the index card.

11. Look through the second lens and bring the moon that shines through the card into focus.

12. As you still look through the second lens, remove the card and look through both lenses. Make any tiny adjustments, if needed. You're looking for the moon to be in focus and magnified. You just made a refractor telescope, exactly like Galileo did 400 years ago!

13. Draw a diagram of your telescope and include the following:
 a. Label the two lenses
 b. Label the light source
 c. Measure the distance between the light source and the first lens and draw it in your diagram
 d. Measure the distance between the first and second lens and draw it in your diagram
 e. Title your image – what kind of telescope is it?
 f. What is the magnification of your telescope? Add this to your drawing under the title.

14. Now, we're going to replace one of the lenses with a curved mirror to make a reflector telescope.

15. Mount the mirror at the far end of the optical rail. The light source is still at the opposite end.

16. Move the index card into position to catch the reflection of the moon. Adjust the mirror so that the moon is right over the rail and in focus. Make sure the index card is not attached to the optical rail.

17. Pick up your double-convex lens and place it on the opposite side of the card from the mirror and look through it to focus the image as we did before.

18. Uh-oh! Did you find a problem? That's right – your head got in the way of the light source, didn't it?

19. What if we use a tiny mirror to change the direction of the light and then we can focus it?

20. Open up the paperclip into an L-shape and hot glue or tape one side of the L to the back of your mirror.

21. The other end of the paperclip attaches to the popsicle stick so you can insert it into the optical rail.

22. Hold the popsicle stick and paper clip junction as you rotate the mirror into position. You need to flip it 90 degrees down and over at 45 degrees.

23. Insert the secondary mirror (the tiny one we just mounted on a popsicle stick) into the optical rail.

24. Adjust your rail so that the moon is right over the rail and at the edge of the index card.

25. Adjust the image of the moon by moving the mirror so that the moon is the same height as the tiny mirror.

26. When you've got it, remove the card and the image should be right on your card. Look right at the tiny mirror with your eye and see if you can spot the crescent moon.

27. Take your magnifier and hold it up to your eye to see if you can make that focused image even larger. The magnifier is your eyepiece. The curved mirror is your primary mirror. The tiny flat mirror is your secondary mirror.

28. Draw a diagram of your telescope and include the following:
 a. Label the two mirrors
 b. Label the lens (what kind is it?)
 c. Label the light source
 d. Measure the distance between the light source and the first (primary) mirror and draw it in your diagram
 e. Measure the distance between the first and second mirrors and draw it in your diagram
 f. Measure the distance between the second mirror and your magnifier and draw it in your diagram
g. Title your image – what kind of telescope is it?
h. What is the magnification of your telescope? Add this to your drawing under the title.

Reading

The word *telescope* came about in 1611 when a Greek mathematician was presented with one of Galileo's instruments. Back then, a telescope was a couple of lenses spaced apart carefully in order to observe distant objects. The first known telescopes were used to look at objects in the distance on land, not the stars.

The earliest telescopes were refractor telescopes. While Galileo is often credited with the first telescope, it was actually first constructed in 1608 by individuals in the Netherlands. Galileo was the first person to take the telescope and point it at the stars.

There are different types of astronomers, some of whom have never looked through a telescope. For example, radio astronomers use satellite dishes to “view” the sky while backyard astronomers use optical telescopes armed with cameras. Professional observational astronomers use computers and specialized camera equipment to look through their X-ray scopes and determine what’s out there. And the kid down the street uses a new set of binoculars he got for his birthday. They are all doing astronomy, just in different ways.

Amateur astronomers usually have smaller telescopes, typically 4” to 20” in diameter. They generally don’t get paid to do astronomy. They just do it for the love of it, and they are the ones you’ll find on sidewalks and sharing views of the sky with the general public during local stargazing events. Many amateur astronomers have discovered new objects based on their raw knowledge of the sky.

Professional astronomers come in two varieties: observational and theoretical. Professional observational astronomers mostly use expensive scientific instruments to look through their massive telescopes for them. They spend a lot of time measuring things, taking data, and crunching the numbers. They are very good at designing and performing experiments that answer the big questions to which no one knows the answers.

Professional theoretical astronomers think up new ideas and new models for fitting the data so that it makes sense in the field of physics. They are great at asking the big questions in the first place. Albert Einstein was a theoretical astronomer, as he hated to do experiments of any kind. Instead, he preferred to sit back and *think* about what might happen in the laboratory of his mind.
Lesson #13: Black Holes

Overview: We’re ready to deal with the topic you’ve all been waiting for! Join me as we find out what happens to stars that wander too close, how black holes collide, how we can detect super-massive black holes in the centers of galaxies, and wrestle with the question: What’s down there, inside a black hole?

What to Learn: We’re going to take a sneak peek at the laws of physics that govern these and more in our adventure through black holes.

Materials

- Marble
- Metal ball (like a ball bearing) or a magnetic marble
- Strong magnet
- Small bouncy ball
- Tennis ball and/or basketball
- Two balloons
- Bowl
- 10 pennies
- Saran wrap (or cup open a plastic shopping bag so it lays flat)
- Aluminum foil (you’ll need to wrap inflated balloons with the foil, so make sure you have plenty of foil)
- Scissors

Experiment

1. During the presentation, when you get to the supernova question: “Why do supernovas explode at all if they are shrinking and collapsing?” stop the video and do the experiment:
2. Pull out the two different sizes of balls that you set aside.
3. First, hold out the larger ball at arm's length in front of you. You’ll want to do this over a flat surface – something without any rugs or carpet. Drop (don’t throw and don’t bounce) your larger ball on the floor. Do you see how high it bounces on its own?
4. Now drop your smaller ball (this can be a bouncy ball or a tennis ball if you’re using a basketball) on the ground and notice how far it bounces back up.
5. Now place the smaller ball on top of the larger ball like it shows here in the picture and let them BOTH drop at the same time so that they fall together and hit the ground with the smaller ball still on top. You’ve got to make sure that the smaller ball stays on top when it hits the ground. If it falls off, you’ve got to do it again.

When the two balls hit the floor, the smaller ball suddenly rebounds with enough energy to hit the ceiling! How high did the larger ball bounce? More or less than when you dropped it by itself? The larger ball transferred its energy to the smaller ball and didn’t bounce much (if at all). This is exactly what happens in a supernova. When the core of a star collapses, it smacks together so HARD that it rebounds – it bounces back. When it rebounds and bounces back out, it collides with the rest of the gas that is still falling inward. When the rebounding core hits the in-falling gas, the core blasts everything out into space... and this makes a giant explosion! This idea is just like the experiment with the tennis ball we just did – the bigger ball is the core collapsing, and the small ball is the outer
gas layers that take longer to collapse. When the core (big ball) rebounds, it hits the gases (small ball) with enough energy to blow the gas layers away from the star. That's why supernovas explode.

Reading

Stars like to live together in families. Galaxies are stars that are pulled and held together by gravity. Some galaxies are sparse while others are packed so densely you can't see through them. Galaxies also like to hang out with other galaxies (called galaxy clusters), but not all galaxies belong to clusters, and not all stars belong to a galaxy.

Active galaxies have very unusual behavior. Most galaxies have super-massive black holes in the center, many of which lie dormant. Scientists think active galaxies are the ones where the black hole is actively feeding on in-falling material. What scientists can detect are huge bursts of energy in the form of X-rays and gamma rays spewing up and out of the plane of the galaxy – a sure sign of a voracious black hole. There are several different types of active galaxies, including radio galaxies, quasars, blazars, and more. Our own galaxy, the Milky Way, has a super-massive black hole at its center, which is currently quiet and dormant.

When you look up at the night sky, it seems like the pinpoints of light are each isolated from each other. When viewed through a telescope, however, single stars can actually transform into tens of millions of stars. Globular clusters are massive groups of stars held together by gravity, usually housing between tens of thousands to millions of stars (think New York City). Open clusters are made up of stars that all have the same chemical composition, but don't usually stay together for long.

When a star uses up its fuel, the way it dies depends on how massive it was to begin with. Smaller stars simply fizzle out into white dwarfs, while larger stars can go supernova. A recent supernova explosion was SN 1987. The light from Supernova 1987A reached the Earth on February 23, 1987 and was bright enough to see with a naked eye from the Southern Hemisphere.

Neutron stars are formed from stars that explode in a tremendous supernova explosion, but aren't big enough to collapse forever and turn into a black hole. When a star explodes, it blows off its outer layers of gases and the inner core collapses down and crushes the atoms together so much that protons and electrons fuse into neutrons. The neutrons are so densely packed together that the space between them is basically gone. Pick up a strand of your hair right now – feel how heavy it is? If this was made of neutron material, it would weigh the same as the Empire State Building. As the neutron star forms, it starts to rotate and form huge magnetic fields. We already know that when you have magnetic fields, electrical fields are not far behind. Neutron stars can wind up spinning very fast, spewing jets of high-energy X-ray particles out the poles. When our telescopes detect the X-rays from a neutron star, we call it a pulsar.

Black holes are the leftovers of a BIG supernova. When a star explodes, it collapses down into a white dwarf or a neutron star. However, if the star is large enough, there is nothing to keep it from collapsing, so it continues to collapse forever. It becomes so small and dense that the gravitational pull is so great that light itself can't escape.

The only way you can detect a black hole is to look at what's happening around it. If a star seems to be orbiting something that isn't there, you can bet it's a black hole. Stuff doesn't just fall straight into a black hole, either. When matter approaches the black hole, it stars to swirl around an accretion disk, which heats up the particles in the disk and lights up the disk so it's visible in the X-ray part of the spectrum (even though the black hole itself is not). You can also detect black holes by the way light is bent when passing by.
Question: What is a black hole? It’s BLACK because it does not emit or reflect light. Black holes are the darkest black in the universe – no matter how powerful a light you shine on it, even if it’s a million-watt flashlight, no light ever bounces back, because it’s truly a “hole” in space.

HOLE means nothing entering can escape. Anything that crosses the edge is swallowed forever. Scientists think of black holes as the edge of space, like a one-way exit door. What’s a black hole made of? Black holes are made of nothing but space and time, and they are the strangest things in nature.

One of the biggest myths about black holes: Black holes are not vacuum cleaners with infinite-sized bags. They do not roam around the universe sucking up everything they can find. They will grow gradually as stars and matter fall into them, but they do not seek out prey like predators. A black hole just sits there with its mouth open, waiting for dinner.

It’s actually more like a basketball hoop – think about a hoop: it just sits there waiting for you to put a ball through, right? I mean, you wouldn’t expect a basketball hoop to chase you around the court, would you? So a black hole just sits there waiting for stuff to fall in, kind of like an invisible trap.

So what IS a black hole?

Here’s an example of what a black hole is: Hold out your hand in front of you, and place in your hand an imaginary ball. Don’t use a real one, or someone might be upset with what we’re going to do with it. Now take that ball and toss it up in the air... does it come back down to you? Sure!

Toss it up even higher now... and it still comes back, right? Pretend you’re outside and really toss it up hard – higher than the house! Does it STILL come back down?

What if you toss it up so fast that it exceeds the escape velocity of earth? (7 miles per second) Will it ever come back? No. The escape velocity depends on the gravitational pull of an object. The escape velocity of the Sun is 400 miles per second. A black hole is an object that has an escape velocity greater than the speed of light. That’s exactly what a black hole is.

Let me say that again – a black hole is an object that requires objects to go faster than light to escape the gravitational pull. That’s all there is to it. The rest is all on the video, including the three ways to detect black holes, what happens if you were to fall into a black hole, and the most famous black hole scientists.

Questions to Answer

1. What are three different ways to detect a black hole?
2. How many ways can a black hole kill you? Can you name them?
3. What happens if you get close to a black hole, but not close enough to get sucked in? (Remember your magnet-marble experiment!)
4. What’s the most interesting thing you learned from the video about black holes?
5. What causes a black hole to form?
6. Does a black hole search for its next victim?

7. Where is the closest super-massive black hole?

8. What is gravitational lensing and why does it work? (Remember your marble-bowl experiment!)
Lesson #14: Black Hole Bucket

Overview: What comes to mind when you think about empty space? (You should be thinking: “Nothing!”) One of Einstein's greatest ideas was that empty space is not actually nothing—it has energy and can be influenced by objects in it. It’s like the T-shirt you’re wearing. You can stretch and twist the fabric around, just like black holes do in space.

What to Learn: Today, you will get introduced to the idea that gravity is the structure of spacetime itself. Massive objects curve space. How much space curves depends on how massive the object is, and how far you are from the massive object.

Materials

- Two buckets with holes in the bottom
- 2 bungee cords
- 3 different sizes of marbles
- 2.5 lb weight
- 0.5 lb weight
- 3 squares of stretchy fabric
- Rubber band
- 4 feet of string
- Fishing bobber
- Drinking straws
- Softball
- Playdough (optional)

Experiment

Making the Buckets Ready for the Lab

1. What is gravity? How does it work? That's what today's lab is all about.
2. Stretch the bungee cord around the circumference of the bucket. Do this for both buckets.
3. On one bucket, tuck in the stretchy fabric under the cord. If your cords are loose, tie another knot near the end so they fit snugly around the bucket. The fabric is stretched like a drum head. This is the “fabric of space” – it's around us everywhere.
4. Push the bottom of the bobber so the hook opens on the other end. Push your string in.
5. Place it in the center of the squares of fabric. Fasten it with your rubber band.
6. Thread the ends of your string through the bottom holes of your second bucket and tie it securely on the bottom.
7. Tuck in your corners under the bungee cord. This is your black hole bucket.
8. The first lab uses two buckets, neither of which is a black hole. We're going to convert the black hole bucket to a regular spacetime fabric bucket. For now, place a second piece of fabric over the black hole bucket and tuck it under the cord so that it looks like the first bucket you used.
9. Now, we're ready for our lab.
Exploring How Space Curves

Write the answers in the spaces provided after each question as you play with your buckets and work through the activities.

10. Place a mid-sized weight in the middle of one of the buckets. What happens to the fabric when you put a weight on the fabric?

11. Place the heavy 2.5-lb lead weight in the center of the fabric of the second bucket. Did it curve more or less than the first weight?

12. The heavier weight is like the Sun, and the lighter weight is like the Earth. Which has more mass?

13. Which has more gravitational attraction?

14. Is space more or less curved further from the object?

15. Where is space curved the most?

16. Grab your marbles. These are your space probes. If we place one probe at the edge of each bucket, which do you expect it to fall toward the middle faster?

17. Why?

18. This is what we mean when we say the force of gravity depends on how much mass something has, since mass curves space. More massive objects curve space more, so the gravitational attraction is more with
more massive objects.

19. Take two marbles of different sizes and drop them at the same time onto the edge of the bucket. You can drop them on opposite sides so they don’t knock into each other. What happens?

20. The Moon is like a giant marble. Why doesn’t it fall to Earth?

21. Why is it orbiting?

22. Remove all weights from the fabric. Roll a marble across the surface (do it slowly without bouncing – planets don’t bounce!). Does it roll straight or curved?

23. Place the heavy weight on the fabric. Try to make the marble go in a straight line. Did it work?

24. Can you roll the marble so that it escapes from the weight that represents the Sun?

25. In the second bucket, place a smaller weight and do steps 23 and 24 again. How is this different?

26. Planets orbit the Sun because space is curved around the Sun. The Moon orbits the Earth without falling in because space is curved around Earth. How fast the moon moves through space and how much the Earth curves space depends on the Earth’s mass and how far away the moon is.

27. If the Moon was in closer to the Earth, would it have to move faster or slower to maintain its orbit?

28. Let’s find out: Place two marbles, one closer to the weight and one near the edge of the bucket, and make them orbit the weight. Which one orbits faster? Why?

29. Replace the weight in the second bucket with a lightweight mass. Now, what if Earth was less massive? How would this change the Moon’s orbit?
30. Notice this: When you roll a ball in orbit around a weight, do you see the weight move slightly also? All orbiting objects yank on each other. The Moon pulls on the Earth just as the Earth pulls on the Moon. All massive objects cause space to move: planets, stars, black holes, comets, etc.

Exploring Black Holes

31. Place a weight in each bucket, one representing the Earth and the other representing the Moon.
32. Place a marble next to each weight. These marbles are your rocket ships. Do you think that you can launch your rockets and escape the pull of gravity? Grab a straw and try to blow the marble away from the weight (launch the rocket off the Earth and moon). What happened? Why?

33. What if we start the rockets in space? Do you think you can escape the pull of the objects now? Start the marbles orbiting and then blow them with the straws. Can you fire your rockets at the right time to get them to escape the orbit?

34. Let’s launch a probe out of a black hole! Remove the fabric from the black hole bucket and place a marble in the black hole. Can you use your straw to blow the marble out of the black hole?

35. Let’s see the difference between the Sun and a black hole. Grab an 8-ounce weight and the softball. These have the same mass, but they are different sizes. The softball is the Sun, and the weight is the black hole. Which is going to curve space more when you place it on the fabric? Guess before you try it:

36. Replace the fabric over the black hole bucket.
37. Place the softball on one of the buckets, and the 8-ounce weight on the other bucket.
38. Roll a marble near the edge of each bucket. This is where our Earth would be orbiting. Notice that although the weight curves space more near it, at the edge, the curvature is the same. So if the Sun were suddenly replaced by a black hole of the same mass, the Earth wouldn’t notice it (gravitationally, at least. It would get dark and cold, though),
39. Remove the second fabric from the black hole bucket so you have the vortex exposed.
40. Take two marbles and start them orbiting at the edge of the black hole. What happens? Why?

41. Make a rocket shape out of clay or playdough. Bring the rocket close to the black hole bucket and get prepared to show your teammates what happens if it goes into the black hole. First, it stretches (pull the rocket into a longer shape), then it gets shredded (crumple it up) and finally added to the black hole’s mass (shove it into the bucket).
Reading

Massive objects are truly massive. If our solar system was the size of a quarter, the Milky Way would be the size of North America.

The Milky Way has an estimated 100 billion stars. That’s hard to imagine, so try this: Imagine a football field piled 4’ deep in birdseed. Now scatter those seeds over North America and space them 25 miles deep. Each seed is a Sun. Stars are very far apart!

If the mass of the Sun was one birdseed, then the mass of a black hole would be 22 gallons of birdseed shoved into the volume of a single birdseed.

It’s time to explore how black holes interact with the universe. There are four animations to watch. These are scientific simulations which used actual data to create them – they are not artist’s concepts or fantasy. They are based on solid physics. The reason they are animations is because these videos happen over such a long period of time, and our view is limited in some cases.

The Tidal Disruption video shows a yellow star that wanders too close to a black hole. The black hole is in the center of a galaxy. Notice how when the yellow star nears the black hole, the star gets stretched, squeezed, and then shredded and torn apart. (You will get to do this with your rocket ship during your lab activity.)

The SGR (Sagittarius) Flare video demonstrates X-ray flares are produced when matter falls into an accretion disk that circles around a supermassive black hole, like the one we have in the center of our own Milky Way galaxy.

The X-ray binary sequence video shows a binary system where one of the stars has exploded as a supernova and dumped its mass onto its companion star. The supernova then turned into a black hole, as in Cygnus X-1 (the first black hole we ever discovered). The remaining star is having its outer atmosphere drawn toward the black hole. As gas falls into the black hole, it emits a flood of X-ray light.

Here’s an animation of two galaxies colliding, each with their own supermassive black holes in their centers. The last image is what we actually see today, and scientists figured out what had to happen in order to create what we see today. Both black holes are actively feeding and producing X-rays. These images were observed by the Chandra Observatory.

Questions to Answer

1. What is the event horizon?

2. Does a more massive object curve space more or less than a smaller object? What does this mean for the gravitational field?
3. Does an object feel more or less gravitational attraction as the object moves closer to a massive object?

4. Where is space most curved?

5. What is mass?
Astronomy 3 Evaluation
Student Worksheet

Overview: Today, you’re going to take two different tests: the quiz and the lab practical. You’re going to take the written quiz first, and the lab practical at the end of this lab. The lab practical isn’t a paper test – it’s where you get to show your teacher that you know how to do something.

Lab Test & Homework

1. Your teacher will ask you to share how much you understand about astronomy. Since science is so much more than just reading a book or circling the right answer, this is an important part of the test to find out what you really understand.

2. While you are waiting to show how much of this stuff you already know, you get to choose which homework assignment you want to complete. The assignment is due tomorrow, and half the credit is for creativity and the other half is for content, so really let your imagination fly as you work through it. Choose one:
 a. Write a short story or skit about gravity from the perspective of the planet or object (like a Sun or moon). You’ll read this aloud to your class.
 b. Make a poster that teaches one of the main concepts of astronomy you enjoyed most. When you’re finished, you'll use it to teach to a class of younger students and demonstrate the principles that you’ve learned.
 c. Write and perform a poem or song about astronomy, telescopes, gravity, space, or black holes. This will be performed for your class.
Astronomy 3 Quiz
Student Quiz Sheet

Name__

1. If we doubled the mass of the Earth, what would happen to its orbital speed?

2. Why do the planets stay in orbit?

3. How fast does the Sun rotate?

4. How does the Sun make energy?

5. Why does Mars appear to move backward?

6. Is Saturn always in the same place every night? Why or why not?

7. Does the moon change position, appearance, or both from night to night?

8. Name two astronomical instruments astronomers use and what they are for.
9. Can you see electrons? If not, how can you detect them?

10. What does a telescope do?

11. Is the number of stars that can be seen through telescopes greater or less than can be seen by the unaided eye? Why?

12. How do scientists currently find other planets around distant stars?

13. Name three ways a black hole can kill you.

14. Name two ways you can find a black hole.

15. What is a galaxy?

16. Do stars differ in size, temperature, and color?

17. What is a black hole?

18. Does a more massive object curve space more or less?
Astronomy 3 Lab Practical
Student Worksheet

This is your chance to show how much you have picked up on important key concepts, and if there are any holes. You also will be working on a homework assignment as you do this test individually with a teacher.

Materials:

- Print out of the Skygazer’s Almanac
- Sheet of paper, pencil

Lab Practical:

- Using the Skygazer’s Almanac, (use the current year, or print out the one on the next page and pretend it’s the current year), show which planets are up tonight, and when the next meteor shower is expected.

- Explain why you should never look at the Sun through anything with lenses. Design and draw an experiment on paper, showing what would happen if you did.

- Explain how satellites are not stationary in orbit.
Answers to Exercises and Activities

Lesson #1: Kepler’s Swinging System

1. If the Sun is not stationary in the center but rather gets tugged a couple of feet as the planet yanks on it, how do you think this will affect the planet’s orbit? (In reality, the planets do not travel in a circle, but rather an ellipse, and the Sun is actually not at the center but at one of the foci of the ellipse. The Sun also moves around due to the planets yanking on it. The result is that the orbiting planet will speed up as it gets closer to the Sun and slow down when it moves away from the Sun.)

2. If we double the mass of Mars, how do you think this will affects the orbital speed? (Not at all. If we doubled the mass of the Sun, Mars would orbit faster. However, if we double the mass of Mars, it does not affect the speed that it orbits the Sun with because Mars is much smaller than the Sun.)

3. If Mercury’s orbit is normally 88 Earth days, how long do you estimate Neptune’s orbit to be? (165 Earth years.)

Lesson #2: Earth’s Magnetic Pulse

1. Does the instrument work without the magnet array? (Yes, but only as a compass.)

2. Why did we use the stronger magnets inside the instrument? (Small lightweight magnets are needed to be used to move the mirrors and detect the fluctuations.)

3. Which planet would this instrument probably not work on? (Venus and Mars)
Lesson #3: Retrograde Motion

1. During which months does Mars move in retrograde? (Between April and July)

2. Why does Mars appear to move backward? (As the Earth passes Mars more quickly, Mars appears to slow down, stop, and reverse direction.)

3. Which planets have retrograde motion? (All planets.)
Lesson #5: What’s in the Sky?

“What’s in the Sky?” Data Table

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer (date and/or time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>What time does Venus set on April 22?</td>
<td>10:35 p.m.</td>
</tr>
<tr>
<td>When does Mars set on August 12?</td>
<td>9:30 p.m.</td>
</tr>
<tr>
<td>When is the full moon in March?</td>
<td>March 8</td>
</tr>
<tr>
<td>When is the best date and time to view both Jupiter and Saturn?</td>
<td>(answers vary, but Sept. 9 is a choice)</td>
</tr>
<tr>
<td>When is the best meteor shower for the entire year?</td>
<td>(answers vary, but Lyrids and Leonids are great choices with nearly no moon)</td>
</tr>
<tr>
<td>Which day is the longest?</td>
<td>Dec. 21</td>
</tr>
<tr>
<td>When do two planets rise at the same time?</td>
<td>4:30 a.m. on Nov. 27</td>
</tr>
<tr>
<td>If this calendar was for this year at your exact location, what would you be looking forward to tonight?</td>
<td>(answers vary)</td>
</tr>
</tbody>
</table>

1. Is Mercury visible during the entire year? (No, only for a couple of months.)
2. In general, when and where should you look for Venus? (Near the eastern or western sky during twilight during certain months of the year, because it’s always rising or setting, never transiting.)
3. When is the best time to view a meteor shower? (Look for a starburst symbol that is close to a new moon symbol. The skies will be dark enough to view the meteors.)
4. Which date has the most planets visible in the sky? (Feb. 12 has all 7 planets visible sometime during the night, although Nov. 11 is a better night to view, since Mercury and Neptune won’t be lost in the sunset.)

Lesson #6: Jupiter’s Jolts

1. What happens if you hold the nail and charge the aluminum foil? (It also works to charge up the film canister.)
2. Can you see electrons? Why or why not? (No – they are too small!)

Lesson #7: Moons of Jupiter

1. Find a date that has all four moons on one side of Jupiter. (Early on Dec. 13)
2. When is Callisto in front of Jupiter and Io behind Jupiter at the same time? (Dec. 14)
3. Are the images you’ve drawn in the table what you’d expect to see in binoculars, or are they upside down, mirrored, or inverted? (They are exactly what I’d expect to see.)
Lesson #8: Solar Viewers

1. How many longitude degrees per day does the sunspot move? (About 12° per day, and when you divide 360° by 12° per day you get 30 days for a sunspot to move all the way around the Sun. But the Earth is also moving around the Sun in the same direction, but it does this at about 1° per day, so it makes the Sun seem like it’s rotating less than it really is. So we need to add 1° per day to the 12, so we get 13 degrees per day, or 360° ÷ 13° per day = 28 days.)

2. Do all sunspots move at the same rate? (No. Sunspots at the poles move slower than at the equator, about once every 31 days.)

3. Did some of the sunspots change size or shape, appear or disappear? (Yes, all the time!)

Lesson #9: Cosmic Ray Detector

1. How does this detector work? (When the particle enters the chamber, it smacks into the alcohol vapor and makes free ions. The vapor in the chamber condenses around these ions, forming little droplets which form the cloud trail.)

2. Do all particles leave the same trail? (No. Different types of particles leave different trails. Alpha particles are heavy and create straight, thick trails. Beta particles, which are light, will leave light, wispy, trails. If you see any curly trails or straight paths that take a sharp turn, those are particles that have smacked into each other.)

3. What happens when the magnet is brought close to the jar? (You can use a magnet to deflect the cosmic rays if the magnet is strong enough and positioned just right.)

Lesson #10: Spectroscopes

1. Name three more light sources that you think might work with your spectroscope.

2. Why is there a slit at the end of the tube instead of leaving it open? (The light that strikes the end of the tube gets mostly reflected away, and only a tiny amount of light gets inside the tube to the diffraction grating. If you had too much light, you wouldn't be able to see the spectrum.)

Lesson #11: Fire & Optics

1. What happened to the leaf? Why? (You are concentrating the light, specifically the heat, from the Sun into a very small area. Normally, the sunlight would have filled up the entire area of the lens, but you’re shrinking this down to the size of the dot that’s burning the leaf.)

2. How did you get the nail to drop? (By concentrating the energy from the Sun using the magnifier.)

3. Which material ignited the quickest? (Refer to data table.)
Lesson #13: Black Holes

1. What are three different ways to detect a black hole? (Look for X-rays from actively feeding black holes, gravitational lensing, and stars that appear to orbit something that’s not there.)

2. How many ways can a black hole kill you? Can you name them? (You can get killed by a black hole by: falling in, spaghettification, being near when it forms, being near when it evaporates, being near when two black holes smack into each other, fried by the X-rays coming out)

3. What happens if you get close to a black hole, but not close enough to get sucked in? (Remember your magnet-marble experiment! Your path appears to be straight (to you), but in follows the curve of space and deflects.)

4. What’s the most interesting thing you learned from the video about black holes?

5. What causes a black hole to form? (When the biggest stars run out of fuel, they explode and what’s left over is a black hole as the core collapses forever.)

6. Does a black hole search for its next victim? (No – it just sits there waiting.)

7. Where is the closest super-massive black hole? (At the center of our galaxy.)

8. What is gravitational lensing and why does it work? (When gravity from a black hole bends light, we can see the effects in photographs. Although we can’t actually "see" a black hole, we can see the light being bent around it.)

Lesson #14: Black Hole Bucket

1. What is the event horizon? (If you fall into a black hole, you’ll never get out again, because falling into a black hole is a lot like falling over Niagara Falls – there’s no way of getting back the same way you came.

The edge of a black hole is called the “event horizon,” and it’s like the edge of a waterfall. Do you see the water that’s about to fall over the edge? Once you pass the edge, there’s no turning back. That’s called the "point of no return.")

2. Does a more massive object curve space more or less than a smaller object? What does this mean for the gravitational field? (More massive objects curve the fabric of space more than a smaller object. More mass = more curvature = more gravitational attraction.)

3. Does an object feel more or less gravitational attraction as the object moves closer to a massive object? (As the distance decreases from the center of an object to a massive object, the curvature increases, and the gravitational attraction also increases.)

4. Where is space most curved? (Space is curved most nearest the object and less curved out near the edge.)

5. What is mass? (Mass is the amount of stuff (atoms) in an object.)
Vocabulary for the Unit

Asteroid. Object in orbit around the Sun, intermediate in size between meteoroids and planets.

Asteroid belt. The region of the solar system in which most asteroids have their orbits, between Mars and Jupiter.

Black holes are the leftovers of a BIG supernova. When a star explodes, it collapses down into a white dwarf or a neutron star. However, if the star is large enough, there is nothing to keep it from collapsing, so it continues to collapse forever. It becomes so small and dense that the gravitational pull is so great that light itself can't escape.

Center of mass. Mean position of the masses that comprise a system or larger body: for two bodies, the center of mass is a point on the line joining them. For a binary star system, the motion of each star can be computed about the center of mass.

Comet. Small body in the solar system, in orbit around the Sun. Some of its frozen material vaporizes during the closer parts of its approach to the Sun to produce the characteristic tail, right behind the head.

Conjunction. Closest apparent approach of two celestial objects. Planetary conjunctions were once considered important omens for events on Earth.

Constellation. A group of stars that seemed to suggest the shape of some god, person, animal or object. Now a term used to designate a region of the sky. There are 88 constellations.

Dark matter: Matter in the cosmos that is undetectable because it doesn't glow. Dark matter, some of it in the form of as-yet-undiscovered exotic particles, is thought to comprise most of the universe.

Eclipse. Blocking of light from one body by another that passes in front of it. Eclipses can be total or partial.

Eclipse path. Narrow path on the Earth's surface traced by the Moon's shadow during an eclipse.

Eclipsing binary star. Binary star whose mutual orbit is viewed almost edge-on so that light observed is regularly decreased each time one star eclipses the other.

Ecliptic. Path that the Sun appears to follow, against the stars on the celestial sphere, during the course of a year.

Ecliptic plane. Plane defined by the Earth's orbit around the Sun.

Electromagnetic wave: A structure consisting of electric and magnetic fields in which each kind of field generates the other to keep the structure propagating through empty space at the speed of light, c. Electromagnetic waves include radio and TV signals, infrared radiation, visible light, ultraviolet light, X-rays, and gamma rays.

Ellipse. Type of closed curve whose shape is specified in terms of its distance from one or two points. A circle is a special form of ellipse. In appearance, an ellipse is oval-shaped.

Escape speed: The speed needed to escape to infinitely great distance from a gravitating object. For Earth, escape speed from the surface is about 7 miles per second; for a black hole, escape speed exceeds the speed of light.

Equinox. Two days each year when the Sun is above and below the horizon for equal lengths of time.
Event horizon: A spherical surface surrounding a black hole and marking the “point of no return” from which nothing can escape.

Field: A way of describing interacting objects that avoids action at a distance. In the field view, one object creates a field that pervades space; a second object responds to the field in its immediate vicinity. Examples include the electric field, the magnetic field, and the gravitational field.

Galaxies are stars that are pulled and held together by gravity.

Globular clusters are massive groups of stars held together by gravity, using housing between tens of thousands to millions of stars (think New York City).

Gravitational lensing is one way we can “see” a black hole. When light leaves a star, it continues in a straight line until yanked on by the gravity of a black hole, which bends the light and change its course and shows up as streaks or multiple, distorted images on your photograph.

Gravitational time dilation: The slowing of time in regions of intense gravity (large spacetime curvature).

Gravitational waves: Literally, “ripples” in the fabric of spacetime. They propagate at the speed of light and result in transient distortions in space and time.

Gravity: According to Newton, an attractive force that acts between all matter in the universe. According to Einstein, a geometrical property of spacetime (spacetime curvature) that results in the straightest paths not being Euclidean straight lines.

Latitude: Coordinate used to measure (in degrees) the angular distance of a point or celestial objects above or below an equator.

Light year: Distance that light travels in 1 year.

Longitude: Coordinate used to specify the position of a point or direction around (or parallel to) an equator.

The **Kuiper Belt** is an icy region that extends from just beyond Neptune (from 3.7 billion miles to 7.4 billion miles from the sun). This is where most comets and asteroids from our solar system hang out.

Neutron stars with HUGE magnetic fields are known as **magnetars**.

Magnetic field: Region surrounding a magnet or electric current, in which magnetic force can be detected in such a region, high-speed electrically charged particles will generally move along curved paths and radiate energy.

Magnetic pole: One of the two regions on Earth to which a compass needle will point. Poles also exist on magnets, and the magnetic fields of some electric currents can have an equivalent behavior.

Magnetoshpere: Region surrounding a star or planet (including Earth) in which a magnetic field exists.

Meridian: Great circle, on the celestial sphere or the Earth, that passes through both north and south poles and an observer's zenith or location.

Meteor: Glowing trail in the upper atmosphere, produced by meteoroid burning up as it moves at high speed.
Meteor shower. Numerous meteors seen in a short time span as the Earth moves through a cloud of meteoroids, probably remnants of a comet and still following the comet's orbit.

Meteorite. Remnant of a meteoroid that has been partially eroded in passage through the Earth's atmosphere before hitting the surface. Term now also applied to similar bodies that collide with the surfaces of the other planets and their satellites, producing craters.

Meteoroid. Large rock (but much smaller than minor planets) moving in an orbit in the solar system. Meteoroids that enter in the Earth's atmosphere are termed meteors or meteorites, depending on their behavior.

Neutron stars are formed from stars that go supernova, but aren't big and fat enough to turn into a black hole.

The **Oort Cloud** lies just beyond the Kuiper belt, housing an estimated 1 trillion comets.

Orbit. Path traced out by one object around another.

The visible surface of the sun is called the **photosphere,** and is made mostly of plasma (remember the plasma grape experiment?) that bubbles up hot and cold regions of gas.

Dying stars blow off shells of heated gas that glow in beautiful patterns called **planetary nebula.**

Pulsars are a type of neutron star that spins very fast, spews jets of high-energy X-ray particles out the poles, and has large magnetic fields.

Our **solar system** includes **rocky terrestrial planets** (Mercury, Venus, Earth, and Mars), **gas giants** (Jupiter and Saturn), **ice giants** (Uranus and Neptune), and assorted chunks of ice and dust that make up various **comets** (dusty snowballs) and asteroids (chunks of rock).

Spacetime: The four-dimensional continuum in which the events of the universe take place. According to relativity, spacetime breaks down into space and time in different ways for different observers.

Spacetime curvature: The geometrical property of spacetime that causes its geometry to differ from ordinary Euclidean geometry. The curvature is caused by the presence of massive objects, and other objects naturally follow the straightest possible paths in curved spacetime. This is the essence of general relativity's description of gravity.

Spacetime interval: A four-dimensional "distance" in spacetime. Unlike intervals of time or distance, which are different for observers in relative motion, the spacetime interval between two events has the same value for all observers.

Special theory of relativity: Einstein's statement that the laws of physics are the same for all observers in uniform motion.